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ABSTRACT 

 

 

Deterministic transmission planning is based on deterministic assumptions, by planning 

for a single forecasted set of conditions. The issue of adaptability in transmission and generation 

expansion planning has become important for planners in order to deal with future uncertainties. 

Adaptability is “the ability to change (or be changed) to fit changed circumstances” [1]. 

Adaptability planning helps mitigate losses in unforeseen situations and exploit opportunities in 

expected situations. Adaptability also provides the opportunities to take alternative actions after 

events unfold. Adaptable plans can help reduce future costs and time, and it also reduces 

complexity associated with possible future changes to the existing system. In order to assess the 

value of adaptable planning in this dissertation, our approach is illustrated using the IEEE 24 bus 

system and the Iowa system. Our adaptable planning shows there is benefit in incorporating 

uncertainty into power system planning when compared to deterministic planning which is the 

conventional approach.    
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CHAPTER 1. INTRODUCTION 

 

1.1 Introduction To Power System Planning 

 

Modern-day synchronized electric power grids can be regarded as very large machines. 

As the electric grid continues to evolve, planning and implementation of new investment is an 

issue power system planners have to consider. Power system planning is a very difficult and 

comprehensive process because it involves projecting into the future and making investment 

decisions that will satisfy demand growth, reliability and other constraints that ensure the 

satisfactory performance of a power system. The integration of renewables in to the electric 

power grid has also become a challenge for power system planners because renewables are not 

dispatched conventionally like other generating technologies and could cause reliability issues if 

the impact of renewables is not properly considered.  

Power system planning can be performed for short, medium and long-term periods. 

Power system planning can also be performed at the distribution, transmission or generation 

levels. The decision power system planners make are where to locate new investment, the 

capacity of new investment, the timing of new investment, and what type of technology should 

be installed. One of the most important tasks to be done before planning is performed is load 

forecasting. The electric load is forecasted for the entire planning period; planning constraints 

ensure that the supply of generation will be adequate throughout the planning horizon. Factors 

determining load forecasting are expected population growth rate and other economic indices 

like Gross Domestic Product. Power system planning is a very computational task due to the fact 

that an interconnected power systems involved a very large number of components,  
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 each requiring representation, including existing lines, existing generation, projected 

retirements, load forecasts, candidate generation technologies, candidate transmission 

line technologies, and uncertainties, and 

 each requiring operational coordination within the system, according to the physical laws 

governing electric power flow (e.g., nodal balance and impedance effects) 

The objective of a power system planning problem is to minimize investment costs and 

cost of generation for the planning horizon. Power system planning can be either static or 

dynamic. Static planning is when planning is done for single stage or period while dynamic 

planning is done for multiple stages and provides a solution for multiple stages in a single 

formulation. 

 

1.2 Motivation 

 

The major motivating factor for this dissertation is that power systems are necessarily 

planned under uncertainty, since the planning period is always in the future. Change is inevitable 

and power system planners have realized that planning based deterministic futures can have 

serious economic and reliability consequences if the future turns out to differ from the one that 

was assumed when the plan was developed as it inevitably does. The next section discusses the 

types of uncertainties power system planners have to consider and how uncertainty is modelled 

in this research. 

Power system planning engineers understand that planning on a single future is 

unreasonable. Uncertainty in fuel cost, government policies, demand, technology change and 

investment costs are inherent to the power system planning problem. For example, fuel price is 

highly uncertain, especially for natural gas, both in the short-term where it incurs high volatility, 
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and in the long-term, where its price is heavily dependent on the uncertainties of gas supply and 

demand. Government policies, such as renewable portfolio standards (RPS), production tax 

credits, and greenhouse gas penalties, are also  uncertain and must be faced by power system 

planners. RPS is a regulation introduced by different states to increase energy production from 

non-conventional sources such as wind, solar, geothermal and biomass. California has mandated 

that by 2020, 33% of electricity generation should come from renewable generation [2]. The 

production tax credit is an incentive initiated by the federal government to subsidize the 

production of electricity from renewables; it is typically renewed for between one and three years 

after which it may or may not be in place.  

 One of the challenges the power industry is facing is climate change. This has put heavy 

pressure on generating companies (GENCO’S) to retire many of the coal generating plants. 

Government policies on carbon dioxide (CO2) is also another source of uncertainty. The idea of 

the carbon tax is to penalize each ton of Greenhouse Gas (GHG) emitted. So far, there is no 

penalty associated with greenhouse gasses (e.g., carbon dioxide); however, it is certainly 

possible, and perhaps even likely, that such a cost will be imposed within the next ten years, a 

time frame which is well within the planning horizons of most electric generation and 

transmission owners. Nonetheless, the US federal government has been utilizing other ways to 

encourage utilities to shift from fossil-based technologies to cleaner technologies such as 

renewable energy.  For example, the US Environmental Protection Agency (EPA) has imposed 

rules called the Mercury/Air Toxics Standards (MATS) which limits the amount of hazardous air 

pollutants that can be emitted from power plants. A more recent EPA-sourced ruling is referred 

to as 111d which would limit the amount of CO2 emitted from each state, forcing the retirement 

of many coal plants. However, this ruling has been challenged in the courts, and at the time of 
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this writing, it is uncertain whether it will be enforced or not. These policy-related influences 

have led to the retirement of coal- and oil-fired technologies, discouraging investment in these 

technologies.  

Another uncertainty that is having heavy influence on power system planning is the 

extent to which distributed generation will play a role in the future resource portfolio. Distributed 

generation refers to generation sited at or close to the point of use, typically interconnected at the 

distribution (or low) voltage levels. As distribution generation penetration increases, there will be 

an increase in the uncertainty associated with building conventional generation and transmission.  

Power system planning also faces uncertainties such as unforeseen scientific 

breakthroughs in transmission and generation technologies, i.e., in the maturation rates of 

technologies that can be planned. For example, extracting energy from the ocean tides, although 

possible, is very expensive today. As long as the investment cost of tidal energy remains at its 

current level, it will not play a significant role in future planning alternatives. However, if the 

investment cost of tidal energy were to dramatically drop due to a one or more technological 

developments which significantly decrease its investment cost, tidal energy could become a 

major player along the Atlantic, Gulf, and Pacific coasts of the US. This would be extremely 

significant because the U.S. load centers are largely located in these areas. Whether tidal energy 

investment cost actually decreases in this fashion is highly uncertain.   

If present plans do take into account all these uncertainties, the plan may cause 

unforeseen economic consequences or even become obsolete if drastic changes occur in the 

future. Figure 1, below, illustrates the various uncertainties typically considered by power system 

planners. The major problem for handling these uncertainties today within the power system 

planning function is that there are few methods, if any, which are computationally tractable for 



www.manaraa.com

5 
 

  

doing this. In this dissertation, we aim to develop one such method.  Uncertainty is modelled 

using what we call global scenarios. The uncertainty is represented as a specified set of 

trajectories through the time intervals, one for each defined “future,” where each trajectory 

represents a set of realizations on global uncertainties at each stage or time interval. 

 

Figure 1: Uncertainties faced by power system planners 

1.3 Problem Statement 

 

The problem addressed in this work is that transmission and generation take years to 

build and therefore are necessarily planned without knowing the future conditions to which they 

will be exposed. In addition, they are capital-intensive. We therefore seek to identify 

transmission and generation investment plans that are effective in adapting to a variety of 

possible futures.   We use multi-period optimization for transmission only and for simultaneous 

selection of generation and transmission (co-optimization), with investments distinguished 
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between core investments (what is planned to be built) and adapted investments (what will need 

to be built once a particular future is revealed). 

 

1.4 Application: Resource To Backbone Transmission 

 

Wind power has been growing at a very fast rate in the United States. The state of Iowa is 

also in the forefront of wind generation. According to the American Wind Energy Association 

“Iowa led the nation by producing 28.5 percent of its electricity from wind power, followed by 

South Dakota at 25.3 percent and Kansas at 21.7” [3]. The retirement of coal plants due to 

stringent policies on CO2 emissions will continue to aid wind growth. The production tax credit 

(PTC) has also aided the growth of wind power investment. The production tax credit is an 

incentive given by the federal government for the production of renewable energy. Advances in 

wind turbine technology have also led to the increase in wind power growth. Despite the fact 

there has been significant increase in wind power and wind power projected to supply a 

significant amount of electric energy required by the U.S., the transmission to transfer this power 

to load centers is insufficient. Most wind farms tend to be located in remote areas where there is 

not enough available transmission capacity to transfer most of this power to where they are 

needed. Another issue is that sometimes available substations to connect most of this wind farms 

are very far from where this wind farms are located. 

Therefore, one kind of transmission design that has recently become of interest in the 

industry, and, like any other transmission design, is subject to uncertainty, is the so-called 

“resource to backbone” (R2B) transmission. This transmission design problem is motivated by 

the possibility that wind energy penetration will increase significantly over the next 40 years in 

certain regions typically relatively remote from load centers, e.g., the Midwest U.S. and in 
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particular, Iowa, and that high capacity backbone transmission will be needed to transfer much of 

this energy to the eastern part of the U.S. where the major load centers are located. One 

transmission design problem is the design of the so-called “backbone transmission” to perform 

this long-distance power transfer. A subsequent and related design problem is the design of the 

transmission necessary to move power from the windfarms up onto the backbone transmission, 

the problem we denote as the R2B transmission design problem.  

       We identify the backbone transmission design problem as the “level 3” problem of moving 

wind energy; typically, transmission voltages considered in this problem include 345, 500, or 

765 kV AC, and 500, 600, or 800 kV DC. The R2B problem is the “level 2” problem; typically, 

transmission voltages considered in this problem include 69, 138, 161, and 230kV AC. We 

classify the familiar (to the industry) problem of collection within a windfarm as the “level 1” 

problem; typically, the 34.5 kV AC distribution voltage is utilized at this level. These three 

problems are illustrated in Fig. 2 below. The “level 2” R2B problem in which we have particular 

interest in this dissertation is appropriately characterized as one in which a multi-farm collection 

network must be designed.  
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Figure 2: A 3-level conceptualization 

 

Thus, we will apply our computational methods of planning under uncertainty to the 

problem of cost-effective design of R2B transmission so as to maximize future flexibility. Thus, 

in this research; we explore and develop analytical and qualitative approach in designing flexible 

R2B transmission networks.  

           

   

1.5 Contributions 

 

The contributions of this thesis are described below. 

 

 Extended the adaptation for generation expansion planning to transmission 

expansion planning: When it comes to consider global uncertainties in planning, it is 

expensive constructing a robust infrastructure that is able to perform well under all of the 

different futures. This motivated   the desire to design transmission systems that are 

adaptable under global uncertainties. 
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 Extended the adaptation for generation expansion planning to co-optimization 

expansion planning: A co-optimization formulation under uncertainty will help power 

system planners effectively co-ordinate the generation and transmission planning under 

uncertainty. 

 Development of a scenario reduction technique for both transmission planning and 

co-optimization planning: Scenario reduction can make large-scale transmission and 

generation computationally tractable. 

 Identification of the relationship of stochastic programming to adaptation: The 

conceptual similarities and differences are highlighted, and formulational similarities and 

differences. 

 Designed R2B transmission design under uncertainty for the state of Iowa: 

Developed procedures for designing R2B transmission under uncertainty and applied it to 

the Iowa power system. A backbone is designed in order to increase the available transfer 

capability within and out of the state of Iowa. 

 

 

1.6 Thesis Organization 

 

This section gives a general summary of the dissertation. This dissertation is divided into 

7 chapters. The order, format and contents of these chapters are described below. 

 

Chapter 2 

 

Chapter two provides a literature review related to this dissertation. The purpose of this 

chapter is to analyze previously published work related to the dissertation objective in terms their 

strengths and weaknesses. This chapter also describes the rationale for proposing a new approach 
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instead of using previously known approaches. This chapter describes known approaches used 

for decision making under uncertainty and the proposed approach used in this work. Another 

major section in this chapter is description of how previous approaches have been used to solve 

problems faced in the power industry. 

Chapter 3 

 

Chapter three compares and contrasts the proposed approach used in this dissertation and 

a widely used approach in decision making under uncertainty (i.e. Stochastic Programming). The 

formulations for both approaches are described and explained. The conceptual foundation for 

both approaches are described. 

 

Chapter 4 

 

Chapter 4 describes mathematical models for adaptation approach. The mathematical 

formulation for the adaptation is formulated and described. Scenario reduction technique used is 

also described. 

Chapter 5 

This chapter illustrates the application of adaptation to transmission expansion planning 

using a test system – the IEEE 24 bus test system. Uncertainty modeling and scenario reduction 

are illustrated. This chapter also illustrates illustrates the application of adaptation to co-

optimization expansion planning using IEEE 24 bus system. In this co-optimization formulation 

the transmission candidates decision variables are integer while the generation decision variables 

are continuous variables. This chapter also shows the benefit of incorporating uncertainty into 

the decision making process of power system planning. 
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Chapter 6 

This chapter describes mathematical models used to design R2B transmission under 

uncertainty. This chapter also describes the Iowa power system used in this work and a backbone 

transmission is designed that would transfer most of this wind to states eastward from Iowa 

where the load is high. The transmission designs obtained are analyzed in terms their strengths 

and weaknesses. The adaptive designs are also compared to deterministic designs, and the 

benefits of including uncertainty into planning is analyzed. The computational techniques 

applied to solve the models are described. The scenario reduction technique as it is applied is 

also described.    

Chapter 7 

This chapter provides conclusion of this work and describes its significance, strengths, 

weakness and limitations. This chapter also identifies possible future continuations of this work. 

Recommendations based on findings in this research are also provided. 
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CHAPTER 2. LITERATURE REVIEW 

 

There have been many approaches applied to power system planning and operations 

under uncertainty. This chapter gives an introduction to several well-known approaches used to 

solve power system problems when faced with uncertainty. This chapter also describes several 

previous papers that have used these approaches and how these approaches were deployed to 

solve the problem of uncertainty in the area of power system planning and operations. In this 

review we focus on decision theory, stochastic programming, robust optimization and real 

options as previous approaches and a new approach known as adaptation is also described, which 

is the approach used in this dissertation. 

 

2.1 Decision Theory 
 

Decision theory is the theory of decision making. Every decision maker is faced with the 

problem of how to make the best decisions. Decision theory helps a decision maker choose from 

a set of alternative based on their possible consequences and benefits. The main elements 

involved in decision making are alternatives, scenarios, consequences and criterion. Alternatives 

are possible choices in which one has to be chosen, a scenario is a possible future that can be 

characterized by factors such as economic, social, and technological factors, consequences are 

the outcomes of decisions that were made earlier, while criterion is the objective with which the 

decision maker uses to compare alternatives. 

2.1.1 Decision making under uncertainty  

 

This involves making decisions when the probabilities of future outcomes are unknown. 

There are different approaches to making decisions under uncertainty; they are Minimax, 
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Minimin, Regret Minima, Hurwicz and Laplace criterion. The objective of any firm is to 

minimize revenues minus cost. 

Minimax 

The minimax principle computes the maximum costs for all alternatives and then finds 

the minimum of them all, the minimax principle seeks to minimize possible costs for worst case 

scenarios. Even though this approach is a very risk averse approach, it throws away too many 

information, hence focuses on extremes, this is considered pessimistic. 

 

 * min max(P )ij
i j

                                                                                                                          (2.1) 

where Pij  is the profit of alternative i in scenario j 

Regret Minimax 

What Regret minimax does differently from the ordinary minimax approach is that it 

picks the best value from each scenario and subtracts it from the value of all other alternatives 

and then applies the minimax principle. Minimax regret selects the alternative that minimizes the 

maximum opportunity loss. That is it identifies the alternative with the objective π* according 

 
* min(max(R ))ij

i j
 

                                                                                                             (2.2) 
where Rij  is the regret matrix 

 
Laplace criterion 

The Laplace criterion assumes that if the probabilities of different scenarios are not 

known, they should be assumed to be equal. This idea makes the Laplace approach similar to 

decision making under risk. The Laplace criterion applies the “principle of insufficient reason” 

by Jakob Bernoulli [4],which implies that if we are ignorant about the likelihood of events 
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occurring in the future we have no reason to assume that one has a higher chance of occurring 

than the other. One who makes decision based on this criterion is considered a realist. 

 
 

                   (2.3)   

 
 
where Pij  is the profit of alternative i in scenario j 
 

Hurwicz criterion 

This approach identifies best and worst case scenarios and combines them using alpha. 

When alpha is chosen close to 1, this implies that the decision maker is pessimistic about future, 

and when alpha is chosen to 0, this implies decision maker is optimistic about future. Alpha is 

between 0 and 1. 

 * min *max( ) (1 )*min( )ij ij
i jj

P P                                                                                   (2.4) 

where Pij  is the profit of alternative i in scenario j 
 

Minimin 

A decision maker who makes decisions using this strategy is known as an optimist due to 

the fact that the decision maker looks for the best situation that could happen in each scenario 

and for all alternatives and chooses the alternative with the lowest value. 

 
* min(min(P ))ij

i j
                                                                                                                            (2.5) 

 

where Pij  is the profit of alternative i in scenario j 

 

 
 

2.1.2 Recent use of decision theory in power system application  

Zhao et al. [5] defines a flexible plan as one that can adapt to future scenarios in a cost-

effective and timely manner. Zhao introduces the concept of adaptation costs in order to assess 

*

1

1
min

n

ij
i

j

P
n 

 
   

 

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flexibility. Zhao finds the optimal plan for each scenario and uses them as planning candidates. 

After all optimal candidate plans have been solved for each scenario, the selected flexible plan is 

one that minimizes the worst-case adaptation cost. Maghouli et al. [6] formulated a multi-stage 

multi-objective transmission expansion planning problem in which the three objectives used, 

were total social cost, robustness and flexibility. Heuristics were used to solve the mixed integer 

optimization problem. However, this method does not guarantee optimality. The regret minimax 

was used for decision making. The issue with regret minimax as described as Higle and Wallace 

is that “it is both pessimistic and sensitive to the choice of scenarios used when describing the 

problem”[7]. 

 

2.2 Stochastic Programming 

Stochastic programming (SP) has been a conventional and wide spread approach for 

handling uncertainty. SP is based on the assumption that the probability of random data is 

known. This can be seen as a very strong assumption. 

Stochastic optimization requires the following steps [8]: 

1) Build a scenario tree 

2) Assign probabilities to future outcomes 

3) Optimize over all possibilities 

2.2.1 Formulation 

 

Two-stage stochastic optimization 

The idea behind two-stage SP is that the decisions made should be based on information 

available now and not upon future realizations. This is a very common type of SP; it is 

formulated as follows: 
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(x, )T

x
Minimize c x E Q 

                                                                                                (2.6)        
 

s.t  
 

Ax b
                                                                                                                                                          (2.7) 

 

x 0
                                                                                                                                                              (2.8) 

where, 

(x, ) min T

y
Q d y 

                                                                                                                       (2.9) 

T x W y h   
                                                                                                                                    (2.10) 

0y 
                                                                                                                                                             (2.11) 

x is the first stage variable and y is second stage variable, while represents different scenarios. 

Multi-stage stochastic optimization 

Two stage stochastic can be extended to multi-stage stochastic optimization. One of 

important properties of SP is called non-anticipativity. By non-anticipativity we mean that if two 

paths share the same history until a particular stage, they must also share the same decision until 

that particular stage. For instance in Fig. 3 below, path 7 and path 8 have the same history until 

stage 2; this means their solution must be the same until after stage 2. This can be interpreted that 

stochastic optimization can be viewed as a problem having the tree-like structure observed in 
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Fig. 3.

 

 Figure 3: Tree-like structure of a stochastic programming problem  

A multi-stage stochastic optimization with explicit non-anticipative constraints can be 

described as follows[9]. 

 

1 1

S T

s ts ts

s t

Min P c x
 

                                                                                                                        (2.12)           

Subject to 

'

' '

1

t

t ts ts t s

t

A x b


  {1......, }, ' 1......,s S t T                                                       (2.13) 

ts ts tsl x u            {1......, }, 1......,s S t T                                                         (2.14) 

where s stands for scenario, Ps  is the probability of scenario s, t represent stages. 

Non-anticipative constraints 

Let n represent nodes in a scenario tree 
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'ts ts
x x    {1......., }, {1......., 1}, 't tnn N t T s s                (2.15) 

where tn  is the set of scenarios passing through node (t, n) 

Most multi-stage SP are computationally intractable because as the number of scenarios 

increase exponentially as the number of stages increases. This section has provided a brief 

introduction to SP; the next section describes several applications of SP to problems faced in the 

power industry. 

2.2.2 Recent use of stochastic programming in power systems applications 

SP is one of the major tool used by electric power engineers to solve problems when 

faced with uncertainty. Several authors have applied SP to a wide variety of areas in the power 

industry, especially in the areas of electricity markets, generation and transmission expansion 

planning.  

Carrion et al. [10] applied SP to energy supply to large consumers through contracts. 

Carrion et al. [11] also applied SP to vulnerability based transmission expansion planning. The 

idea is how to optimally re-inforce the transmission network in order to mitigate deliberate 

attacks. Vulnerability is measured in terms of the expected load shed. Banzo et al. [12] applied 

SP to planning of offshore wind farms. Gil et al. [13] applied stochastic mixed-integer 

programming to generation capacity expansion planning under hydro uncertainty. 

Konstantelos et al. [14] used SP to solve transmission expansion problem. However, due 

to the fact that transmission investment are capital intensive and irreversible, other non-

transmission options are considered such as phase-shifting transformers, energy storage and 

demand-side management. These non-transmission options are considered as flexible solution. 

The problem is formulated as an SP that evaluates both transmission investment and other 

flexible options under Uncertainty.  
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SP has been widely applied to unit commitment, Zheng et al. [15] compiled a 

comprehensive review of different formulation of unit commitment solved by SP. Qadrdan et al. 

[16] explored the operation of an integrated gas and electricity network in Great Britain. The 

uncertainty considered was wind power forecast. The problem was solved using both two-stage 

SP and multi-stage SP. SP was found to reduce operations costs as compared to a deterministic 

formulation. Tan et al. [17] formulated a two-stage SP that considers the risk level for 

distribution networks operation with wind power, in this problem the first-stage solution is the 

wind dispatched while the second-stage considers the difference between dispatched wind power 

and the actual wind power and also considers the cost of operational risk is also computed.  

Marí et al. [18] used applied SP to planning of renewables for a medium-term horizon. A 

scenario tree was developed using a quasi-Monte Carlo approach considering uncertainties in 

wind power generation, solar photovoltaic generation and hydro inflows.  Munoz et al. [19] 

applied SP to transmission planning under market and regulatory uncertainty. The two-stage SP 

model was used. The stochastic solution was compared to deterministic planning based on 

individual solutions and a heuristic solution that combined results from different deterministic 

plans. The stochastic solution performed better than the deterministic plans and heuristics plans. 

Aasgard et al. [20] applied SP to a market bidding model of hydropower producer 

participants. The uncertainty modelled is water inflow and spot market prices. The optimization 

formulation was a stochastic MILP for bid optimization. The stochastic model was compared to 

a deterministic formulation and performed better in the area of average prices. Romero et al. [21] 

used a two-stage SP model to solve transmission and generation expansion under seismic risk. 

The two-stage SP minimizes the expected generation, load shed and repair costs in selected 

recovery periods 
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2.3 Robust Optimization 

A new approach used for electric power planning under uncertainty is known as robust 

optimization. Unlike SP there is no need for specific probability distributions for the random 

variables. This can be seen an advantage of because sometimes this probability distribution are 

either unknown or difficult to get. When probability distributions for the random variables are 

exact, this is a very strong assumption. Sometimes when new uncertainty arises, there is no 

previous information to model the probability distributions. Determining probability distributions 

wrongly can have dire consequences. One of the drawbacks of robust optimization is that results 

are overly conservative. There are three major ways in which uncertainty sets are modelled in 

robust optimization: box, ellipsoidal and polyhedral sets [22].  The conservativeness can be 

modified by adjusting the uncertainty sets [23].  

 

2.3.1 Formulation 

This section describes mathematical formulation of robust optimization. The standard 

form of linear programming can be written as: 

                                                  Min  'c x                                                                                               (2.16) 

 

                                               s.t    Ax b                                                                                                  (2.17) 

                                                    x X                                                                                                   (2.18) 

The robust formulation can be written as [24] 

                                                      Min   'c x                                                                            (2.19) 

                                       s.t  Ax b      A U                                                        (2.20) 

                                              
x X

                                                                               (2.21)                                                
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where U is the uncertainty set  

2.3.2 Recent use of robust optimization in power system application 

Jabr [25] used robust optimization for transmission network planning under uncertainty, 

uncertain parameters were renewable generation and loads. The range of variation of renewable 

generation and loads are modelled using box uncertainty sets. A minimum and maximum value 

was assigned to both uncertain parameters. Chen et al. also used robust optimization for 

transmission network planning under uncertainty, uncertain parameters were generation and 

loads. Jabr et al. [26] applied robust optimization to investment of storage facilities on 

transmission network. This approach called ROSION—“Robust Optimization of Storage 

Investment On Networks,” ensures that system is operated without load or renewable power 

curtailment. The computational approach used by ROSION is column-and-constraint generation 

algorithm. The uncertainty modelled are extreme operating conditions that the system could 

encounter during a planning horizon. 

Wu et al. [27] applied robust optimization to wind power look-ahead dispatch. The idea is 

to economically dispatch conventional generator in the presence of wind power uncertainty. The 

objective function consists of two costs, the first cost is the cost of conventional generation and 

the penalty cost for the curtailment of wind power. The output solution consists of the dispatch 

for conventional generators and an allowable interval for wind generation output, hence reducing 

the uncertainty associated with the availability of wind generation capacity.  

Dehghan et al. [28] applied robust optimization to generation expansion planning. The 

problem is modelled as mixed-integer linear programming problem. The uncertainty considered 

were demand and both estimated investment and operations costs. The polyhedral uncertainty set 

is used to model these uncertainty. Bender’s decomposition is applied to solve the MILP Model.         

Wang et al. [29] applied robust optimization to optimal placement of DG’s in a micro grid. The 
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objective function was formulated to minimize the difference of revenues (i.e. payment by Load 

serving entity (L.S.E) and utility customers) and investment, O&M costs, fuel costs, emission 

costs. The problem is formulated as two-stage robust optimization problem and the uncertainty 

considered is DG output and load consumption pattern. The polyhedral uncertainty set is used for 

both DG output and load consumption uncertainty. The column-and-constraint generation 

algorithm is used to solve the problem. 

Xiong et al. [30] formulated an adjustable robust optimization to solve the unit 

commitment problem. The problem is modelled as a two-stage robust optimization. The 

objective is to minimize costs of generation and load shedding costs under the worst case 

scenario considering the uncertainty set .The uncertainty considered was generator unavailability 

and demand variability. The polyhedral uncertainty set is used for both generator unavailability 

and demand variability.  

Lee et al. [31] used robust optimization to solve unit commitment problem while 

modelling transmission line constraints. The problem is a two-stage robust optimization. The two 

uncertainty considered were load and wind power generation. The polyhedral uncertainty set is 

used for both load and wind power generation uncertainty. The objective function was 

formulated to minimize was the sum of cost of generation and the worst-case dispatch cost. The 

column-and-constraint generation algorithm is used to solve the problem. The uncertainty 

considered were load and wind power generation. Moreira et al. [32] applied robust optimization 

to security-constrained transmission expansion planning. The authors apply the N-k security 

criterion. The problem is modelled as a tri-level programming approach.  
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Multiple researchers have applied robust optimization to many applications in power 

systems, however despite being a well-known approach,it tends to provide overly-conservative 

results. 

2.4 Real Options 

Real options analysis was introduced by Stewart Myers in 1977 [33]. A real option is the 

right, but not the obligation to undertake an investment decision: usually the option is to delay, 

expand, abandon or reduce a capital investment. The real-options approach applies financial 

options theory to real investments (i.e. the concept of option pricing techniques for financial 

securities is applied to real investment) and focuses on managerial flexibility. Managerial 

flexibility refers to the flexibility a firm has in terms of scaling and timing of an investment 

decision as market conditions change.  The following can be described as types of real options” 

[34]. 

1.) Option to Abandon 

2.) Option to wait and see 

3.) Option to delay  

4.) Option to expand 

5.) Option to contract 

6.) Option to choose 

7.) Option to switch resources 

   

Recent use of real options in power system application 

Jo Min et al. [35] applied the concept of real options to study the impact of entry and exit 

of investment for renewables power producers. In this study, a single renewable site is used. The 
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O&M costs of wind is modelled as Geometric Brownian Motion Distribution (GBM). This study 

examines the entry and exit options available to renewable site decision makers. 

Blanco et al. [36] used real option for the valuation of flexible ac transmission systems 

(FACTS) using the Least Square Monte Carlo Method. The authors try to capture the value of 

deferring investment in transmission lines which have large capital costs by investing in 

(FACTS) devices. The authors view (FACTS) as a tool that adds flexibility to the transmission 

expansion planning.  

Ramanathan et al. [37] applies real options to analyze transmission investments in a 

deregulated environment. In this formulation framework, options such as expanding existing 

transmission lines, delaying transmission investment, and compound options are analyzed for 

transmission investment. Binomial trees analysis with embedded Monte-Carlo simulation is used 

for real options analysis. 

Hedman et al. [38] give an overview of the application of real options to transmission 

expansion planning. Approaches in real options that can be used to assess the value of 

transmission lines investment are described. The authors describe how managerial flexibility can 

more accurately assess the value of transmission planning as opposed to NPV. 

The issue with real options is that it is limited in its scope because the most important 

parameter in real options is volatility, and in a problem where the issue of volatility is not very 

important, its use becomes limited. 

2.5 Adaptation  

The main idea behind adaptation is to design a common transmission network, a core that 

can be adapted to future scenarios. This concept was developed by a former PhD student at Iowa 

State University [39]; however it was applied only to generation expansion planning. This 

research plans to use the adaptation to design flexible R2B solutions, transmission and co-
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optimization planning under uncertainty. The core transmission network is designed so that it can 

adapt to future scenarios at minimum cost. What makes the adaptation unique is that rather than 

selecting a flexible plan, it designs a flexible plan. In this approach, a system is flexible if it can 

be adapted cost-efficiently to the conditions of any other scenario. Figure 4 below depicts the 

idea of the adaptation, which is to choose a core design (“Core Des” in the figure) because it 

minimizes the core cost plus the cost of adapting to the various possible futures. 

 

Figure 4: Conceptualization of adaptation  

A general form of adaptation is to designate the investments associated with a “core” plan 

by the vector xf. These investments describe a decision to build infrastructure, independent of 

what future occurs. We then identify possible futures that may occur, denoted by i=1,…,N, and 

we describe these futures by constraints gi(x
f+Δxi)≤bi, where the Δxi are an additional set of 

decision variables that represent the change in investments, relative to the core investments, if 

scenario i occurs. There is a cost to the Δxi which represents the cost of adapting the core to 

scenario i. The goal is, then, to minimize the total cost, that is, to minimize the cost of the core 

investments plus the adaptation cost. Of course, we may prefer to avoid incurring core costs and 

mainly rely on adaptation; alternatively, we may prefer to avoid adaptation costs and mainly 

relay on core investments. These two extremes, and various other preferences in between, can be 
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achieved by weighting the adaptation costs appropriately. We model the corresponding scalar 

weight as β. This leads to the general expression of adaptation, as follows: 

 Min    ( ) ( x )f

i

i

CoreCosts x AdaptationCosts
 

  
 
                                                                (2.22) 

s.t 

int 1,....... : (x x ) bi i i iConstra s for scenario i N g  
                                                          (2.23)  

fx   Core investments, to be used by all scenarios i 

xi  Additional investments needed to adapt to scenarios i 

Mejia and McCalley [40] proposed adaptation for generation expansion planning. This 

dissertation extends the idea of adaptation to transmission planning and co-optimization of 

transmission and generation expansion.  
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CHAPTER 3. ADAPTATION VS STOCHASTIC PROGRAMMING 

The purpose of this chapter is to clarify the differences between the well-known approach 

for solving optimization problems under uncertainty known as stochastic programming (SP) with 

adaptation. As much as there are differences in these approaches, there are also similarities.  

3.1 Formulations 

This section describes the formulations for SP and for adaptation. We do not provide 

comprehensive formulations of each but rather provide formulations that enable identification of 

the basic differences between the approaches. 

3.1.1 Stochastic programming 

 

A general form for the SP formulation is given as follows: 

1 ,

,

Pr ( )c w w w

c t w t t

t w

Minimize I Cap I Cap OC                                                     (3.1) 

Subject to 

1 , ,w w w

t t tCap Cap Cap t w                                                                                           (3.2) 

 

1 1

w cCap Cap                                                                                                                                          (3.3)  

Plus non-anticipative constraints (see section 2.2) 

Plus operational constraints for each scenario w. 

 

where: 

Ic   is the investment costs of the initial investment 

Cap1
c is the initial capacity investment 

Prw    is the probability of occurrence of scenario w 
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OCt
w is the operation costs of scenario w at time t 

∆Capt
w is the capacity needed to adapt to scenario w at time t 

w designates the scenario 

Capt
w   is the capacity at time t in scenario w 

Capt-1
w is the capacity at time t-1 in scenario w 

Operational constraints include the maximum power a generator is allowed to dispatch in 

an operating condition. These constraints are not analytically expressed here because they are 

similar for both SP and adaptation formulations, and so their presence obscures the main 

differences between the two approaches without providing additional insight. 

The first step in SP is to build a scenario tree and then assign probabilities to future 

outcomes and finally optimize over all possibilities. Equation (3.2) describes capacity update for 

each scenario, where the update at time t is summed with the previous capacity update. Equation 

(3.3) depicts that the initial investment is used for all scenarios. Operations costs is the cost of 

generation dispatch for the planning horizon. 

                  

3.1.2 Adaptation 

 

A general form for the adaptation formulation is given as follows: 

 

, ,

(Pr ) Pradd w w w w w

t t t t t

t w t w

Minimize I Cap OC I Cap                           (3.4) 

Subject to 

 1

c c add

t t tCap Cap Cap t                                                                                      (3.5) 

Core update equation, from t-1 to t 
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 ,w c w

t t tCap Cap Cap t w                                                                                 (3.6) 

Adaptation equation, from core to future w. 

0 0cCap                                                                                                                                                      (3.7) 

where: 

It  is investment costs at time t 

Cap0
c  is the initial capacity of the core-trajectory  

Capt
c  is the core-capacity trajectory at time t  

Capt-1
c is the core-capacity trajectory at time t-1 

Capt
add  is the capacity added to the core-trajectory at time t 

w designates the scenario 

Captw   is the capacity at time t in scenario w 

Prw    is the probability of occurrence of scenario w  

OCt
w is the operation costs of scenario w at time t  

∆Capt
w is the capacity needed to adapt to scenario w at time t  

It
w is the investment costs at time t in scenario w 

β is a trade-off parameter 

In adaptation, the objective function uses parameter β   to multiply the costs of adapting 

to scenarios. The equation (3.5) can be seen as the core-update equation where, at each 

time/stage when decisions are made, the core-trajectory is updated. The equation (3.6) is the 

adaptation equation, where the core-trajectory is adapted to different futures at time t. 
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3.2 Comparison 

This section discusses the formulation differences, differences in the treatment of 

uncertainty, conceptual differences and their complexity analysis. 

3.2.1 Formulation differences 

In adaptation, ΔCaptw   depends only on the relation between the core at time t and the 

feasible set for scenario w at time t, and is independent of ΔCapt-1w. This is not the case in SP 

where future decisions are conditional on previous decisions made in a particular scenario. In SP 

the decision ∆Captw is conditional on the decision ∆Capt-1w and all previous decisions before 

∆Capt-1w.In adaptation, the core-trajectory is updated throughout the planning horizon and 

common to all scenarios, while in SP only initial plan is common to all scenarios.   

3.2.2 Differences in treatment of uncertainty 

In SP, as the number of stages increases the number of scenarios increases, while in the 

adaptation, as the number of stages increases, the number of scenarios does not increase. SP is a 

technique for making sequential decisions under uncertainty. The fact that SP scenarios increase 

as the number of stages increases, can make SP computationally too expensive. The goal of SP is 

to maximize the expected return modelled as a probabilistic objective function, while the goal of 

adaptation is to minimize the cost of the core investments plus the adaptation cost. SP is 

effectively visualized via a scenario tree, as indicated in Figure 5. Denoting each red circle as a 

state and each vertically aligned group of red circles as a stage (in time), we observe that at each 

state in each stage  in the scenario tree there exists a transition probability to move from one state 

to another in the next stage. 



www.manaraa.com

31 
 

  

 

Figure 5: Scenario tree in stochastic programming 

SP develops a strategy for all the paths in a scenario tree. For example in Fig. 5 there is a 

solution strategy for all 9 paths; in addition, SP requires enforcement of non-anticipatively (i.e. 

all paths have the same solution until they split). In contrast, adaptation tries to find a trajectory 

which is “close” to each of the scenario feasibility sets. 

      In adaptation we refer to uncertainties using what we call local and global 

uncertainties [40].  

         a).Global - uncertainties for which different values produce dramatically different 

results: emissions policies, large demand shifts, coal or nuclear unavailability, extremes in fuel 

prices, extended drought, dramatic change in technology investment costs. Within each global 

uncertainty we have multiple local uncertainties. The uncertainty is represented as a specified set 

of trajectories through the time intervals, one for each defined “future,” where each trajectory 

represents a set of realizations on global uncertainties at each stage or time interval. 
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          b) Local - range of values a parameter may take under a global realization: 

variation in load growth, investment costs or fuel prices, e.g, demand growth that is “high” (e.g., 

5%) vs. demand growth that is “low” (e.g., 0.5%).   Local uncertainties refer to those for which 

the uncertain parameter varies about a central value, e.g., expected demand growth of 1.5% with 

3-sigma deviation of 0.5.   

        

 

 

Figure 6: Global and local Uncertainties 

3.2.3 Conceptual differences 

This section discusses conceptual differences between SP and adaptation. A pictorial 

comparison of both approaches in a multi-stage planning horizon is shown in Figs. 7 and 8. 
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Figure 7: Description of adaptation  

 

Figure 8: Description of stochastic programming 

In adaptation illustrated in Fig. 7, we find through Capc, a   

“central” investment trajectory 

that in each period, is “close” to each of the scenario feasibility sets, so that the infrastructure 

design will be able to effectively transition to a “good” solution if, during a given period, one of 

the particular scenarios occurs. In contrast, with SP, we find through Capc, an 

initial investment 

to most effectively facilitate the investment needs of future periods. 
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For both of the above diagrams, the red circle represents the core transmission/generation 

investment that is invested, accounting for all scenarios. There are three time intervals t=1, 2, 3; 

and three futures through those time intervals (in each time interval, the three clouds represent 

the futures at that time). The dashed arrows represent the added transmission/generation 

investment necessary to adapt to each of the three futures at each time interval. 

3.2.4 Complexity Analysis 

Computational complexity “measures how much work is required to solve different 

problems” [41]. The purpose of this section is to compare and contrast adaptation and SP based 

on factors that can increase the complexity of each of these approaches. Both of these problems 

are mixed integer linear programs (MILP).  

A MILP is known to be NP-hard, meaning it is at least as hard as any NP problem. NP 

(nondeterministic polynomial time) are a “set of problems for which a solution can be efficiently 

verified” [42]. 

 For NP-hard problems, there is generally no single factor that determines problem 

complexity.  However, for a MILP problem, it is known that complexity is highly influenced by 

the number of variables, particularly the integer variables, and by the number of constraints. As a 

result, in order to compare the computational complexity of adaptation to SP, we will, in this 

dissertation, compare their respective number of variables and number of constraints.  

        In our effort to compare complexity of  SP with that of adaptation, we will make the 

following assumptions. 

 The SP is a two-stage approximation. This is relevant because in a two-stage 

approximation, after the first stage, uncertainty is revealed for all future stages, and the 
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uncertainty structure has a fan-like structure. This is unlike the multi-stage SP where the 

uncertainty structure is tree-like.  

 The two approaches use the same uncertainty set.  

 The comparison is based on the transmission planning formulation (and not the co-

optimization formulation) for adaptation and for SP with two-stage approximation The 

detailed transmission expansion formulation for adaptation can be found in Chapter 4.   

ILLUSTRATION 
This section illustrates the concept of SP and adaptation on a simple 3-system. The 

planning horizon is 3 years and 2 futures/scenarios are considered. The constraints required to 

solve this problem is written for both SP and adaptation. The base load is assumed to be 

500MW. 

 

Figure 9: 3-bus system 

Table 1: Branch data for existing lines 

Existing lines            Capacity Reactance 

         1-2            200MW                    0.15 

         1-3            200MW                    0.20 

         2-3            200MW                    0.25 
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                                               Table 2: Branch data for candidate lines 

Existing lines            Capacity Reactance 

         1-2            300MW                    0.15 

         1-3            300MW                    0.20 

 

In each year we assume there are 2 operating conditions.  

1) 50% of peak load 

2) Peak load 

 

Two futures/scenarios are assumed 

1) Low load growth 

2) High load growth 

Table 3: load growth for the two futures considered 

Scenario    T=1 T=2 T=3 

Low load growth 505MW 510.05MW 515.15MW 

High load growth 510MW 520.20MW 530.60MW 

 

The types of constraints required for transmission expansion planning are divided into 5 types. 

1) Power – demand balance constraints 

2) Line-flow constraints for existing lines 

3) Line-flow constraints for candidate lines 

4) Capacity limit constraints for candidate lines 

5) Special constraints unique to both approaches 

 

The first two types of constraints are the same for both approaches, so they are written 

once, while the last three types of constraints are different, so they are written both approaches. 
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For the nomenclature, a sample of variables from each type of variable is defined and the rest 

follow the same pattern. 

Nomenclature 

f0
1,2,1,1,1   is the line flow for existing line that goes from bus 1 to bus 2 in operating condition 1 in 

year 1 and in scenario 1 

fc
1,2,1,1,1   is the line flow for candidate line that goes from bus 1 to bus 2 in operating condition 1 

in year 1 and in scenario 1 

P1,1,1,1 is the dispatched power from generator 1 in operating condition 1 in year 1 and in scenario 

1 

θ2,1,1,1  is the angle at bus 2 in operating condition 1 in year 1 and in scenario 1 

X1,0   is the binary variable for transmission line candidate 1 at t=0 

X1,1, X1,2  and X1,3  is the binary variable for  transmission line for candidate 1 at t=1,t=2,t=3 

(variable available only in adaptation formulation for core-trajectory) 

X1,1,1 is the binary variable for  transmission line for candidate 1 at time 1 in scenario 1 

 

Parameters 

We first define parameters used to compare the two approaches. 

W, the number of scenarios; 

B, the number of transmission candidates in binary variables; 

TBsp, the total number of binary variables in an SP formulation; 

TBa, the total number of binary variables in an adaptation formulation;  

TCsp, the total number of continuous variables in an SP formulation; 

TCa, the total number of continuous variables in an adaptation formulation; 
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C, the number of operating conditions in a year; 

E, the number of existing lines; 

NB, the number of buses. 

T is the number of years in the planning horizon 

 

1) Power – demand balance constraints 

Power demand balance equations for the 1st operating condition and for year 1 in scenario 1: 

 

                                                                   (3.8) 

0 0

1,3,1,1,1 2,3,1,1,1 2,3,1,1,1 2,1,1,1 0cf f f P     
                                                                     (3.9)   

0 0

1,2,1,1,1 1,2,1,1,1 2,3,1,1,1 2,3,1,1,1 151.5 0c cf f f f     
                                                       (3.10)    

Power demand balance equations for the 2nd operating condition and for year 1 in scenario 1: 

0 0

1,2,2,1,1 1,2,2,1,1 1,3,2,1,1 1,2,1,1 202 0cf f f P    
                                                                   (3.11) 

0 0

1,3,2,1,1 2,3,2,1,1 2,3,2,1,1 2,2,1,1 0cf f f P     
                                                                      (3.12) 

0 0

1,2,2,1,1 1,2,2,1,1 2,3,2,1,1 2,3,2,1,1 303 0c cf f f f     
                                                          (3.13) 

Power demand balance equations for the 1st operating condition and for year 2 in scenario 1 

0 0

1,2,1,2,1 1,2,1,2,1 1,3,1,2,1 1,1,2,1 102.01 0cf f f P    
                                                           (3.14) 

0 0

1,3,1,2,1 2,3,1,2,1 2,3,1,2,1 2,1,2,1 0cf f f P     
                                                                      (3.15) 

0 0

1,2,1,2,1 1,2,1,2,1 2,3,1,2,1 2,3,1,2,1 153.015 0c cf f f f     
                                               (3.16) 

Power demand balance equations for the 2nd operating condition and for year 2 in scenario 1: 

0 0

1,2,2,2,1 1,2,2,2,1 1,3,2,2,1 1,2,2,1 204.02 0cf f f P    
                                                       (3.17) 

0 0

1,2,1,1,1 1,2,1,1,1 1,3,1,1,1 1,1,1,1 101 0cf f f P    



www.manaraa.com

39 
 

  

0 0

1,3,2,2,1 2,3,2,2,1 2,3,2,2,1 2,2,2,1 0cf f f P     
                                                                   (3.18) 

0 0

1,2,2,2,1 1,2,2,2,1 2,3,2,2,1 2,3,2,2,1 306.03 0c cf f f f     
                                                (3.19)      

Power demand balance equations for the 1st operating condition and for year 3 in scenario 1: 

0 0

1,2,1,3,1 1,2,1,3,1 1,3,1,3,1 1,1,3,1 103.03 0cf f f P    
                                                         (3.20)         

0 0

1,3,1,3,1 2,3,1,3,1 2,3,1,3,1 2,1,3,1 0cf f f P     
                                                                     (3.21)      

0 0

1,2,1,3,1 1,2,1,3,1 2,3,1,3,1 2,3,1,3,1 154.545 0c cf f f f     
                                            (3.22)      

Power demand balance equations for the 2nd operating condition and for year 3 in scenario 1: 

0 0

1,2,2,3,1 1,2,2,3,1 1,3,2,3,1 1,2,3,1 206.06 0cf f f P    
                                                      (3.23)      

0 0

1,3,2,3,1 2,3,2,3,1 2,3,2,3,1 2,2,3,1 0cf f f P     
                                                                  (3.24)      

0 0

1,2,2,3,1 1,2,2,3,1 2,3,2,3,1 2,3,2,3,1 309.09 0c cf f f f     
                                            (3.25)      

Power demand balance equations for the 1st operating condition and for year 1 in scenario 2: 

0 0

1,2,1,1,2 1,2,1,1,2 1,3,1,1,2 1,1,1,2 102 0cf f f P    
                                                                 (3.26)      

0 0

1,3,1,1,2 2,3,1,1,2 2,3,1,1,2 2,1,1,2 0cf f f P     
                                                                    (3.27)      

0 0

1,2,1,1,2 1,2,1,1,2 2,3,1,1,2 2,3,1,1,2 153 0c cf f f f     
                                                        (3.28)      

Power demand balance equations for the 2nd operating condition and for year 1 in scenario 2: 

0 0

1,2,2,1,2 1,2,2,1,2 1,3,2,1,2 1,2,1,2 204 0cf f f P    
                                                             (3.29)      

0 0

1,3,2,1,2 2,3,2,1,2 2,3,2,1,2 2,2,1,2 0cf f f P     
                                                                  (3.30)      

0 0

1,2,2,1,2 1,2,2,1,2 2,3,2,1,2 2,3,2,1,2 306 0c cf f f f     
                                                       (3.31)      
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Power demand balance equations for the 1st operating condition and for year 2 in scenario 2: 

0 0

1,2,1,2,2 1,2,1,2,2 1,3,1,2,2 1,1,2,2 104.04 0cf f f P    
                                                          (3.32)       

0 0

1,3,1,2,2 2,3,1,2,2 2,3,1,2,2 2,1,2,2 0cf f f P     
                                                                     (3.33)       

0 0

1,2,1,2,2 1,2,1,2,2 2,3,1,2,2 2,3,1,2,2 156.06 0c cf f f f     
                                                 (3.34)      

Power demand balance equations for the 2nd operating condition and for year 2 in scenario 2: 

0 0

1,2,2,2,2 1,2,2,2,2 1,3,2,2,2 1,2,2,2 208.08 0cf f f P    
                                                       

(3.35)      

0 0

1,3,2,2,2 2,3,2,2,2 2,3,2,2,2 2,2,2,2 0cf f f P     
                                                                   

(3.36)      

0 0

1,2,2,2,2 1,2,2,2,2 2,3,2,2,2 2,3,2,2,2 312.12 0c cf f f f     
                                             (3.37)      

Power demand balance equations for the 1st operating condition and for year 3 in scenario 2: 

0 0

1,2,1,3,2 1,2,1,3,2 1,3,1,3,2 1,1,3,2 106.12 0cf f f P    
                                                           (3.38)      

0 0

1,3,1,3,2 2,3,1,3,2 2,3,1,3,2 2,1,3,2 0cf f f P     
                                                                       (3.39)      

0 0

1,2,1,3,2 1,2,1,3,2 2,3,1,3,2 2,3,1,3,2 159.18 0c cf f f f     
                                                  

Power demand balance equations for the 2nd operating condition and for year 3 in scenario 2: 

0 0

1,2,2,3,2 1,2,2,3,2 1,3,2,3,2 1,2,3,2 212.24 0cf f f P    
                                                        (3.41)          

0 0

1,3,2,3,2 2,3,2,3,2 2,3,2,3,2 2,2,3,2 0cf f f P     
                                                                    (3.42)         

0 0

1,2,2,3,2 1,2,2,3,2 2,3,2,3,2 2,3,2,3,2 318.36 0c cf f f f     
                                              (3.43)      

The first set of constraints are power demand balance equations for the whole planning horizon. 

The number of these equality constraints can be computed using the formula. 
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=NB*C*T*W 

=3*2*3*2 

=36 

 

2.) Line-flow constraints for existing lines 

 

Line-flow constraints for existing lines in the 1st operating condition, for year 1 in scenario 1: 

 
0

1,2,1,1,1 1,1,1,1 2,1,1,16.67( ) 0f    
                                                                            (3.44) 

 
0

1,3,1,1,1 1,1,1,1 3,1,1,15( ) 0f    
                                                                                   (3.45) 

 
0

2,3,1,1,1 2,1,1,1 3,1,1,14( ) 0f    
                                                                                 (3.46) 

The line-flow constraints for existing lines in the 2nd operating condition and for year 1 in 

scenario 1: 

 
0

1,2,2,1,1 1,2,1,1 2,2,1,16.67( ) 0f    
                                                                          (3.47) 

 
0

1,3,2,1,1 1,2,1,1 3,2,1,15( ) 0f    
                                                                                 (3.48) 

 
0

2,3,2,1,1 2,2,1,1 3,2,1,14( ) 0f    
                                                                                  (3.49) 

The line-flow constraints for existing lines  for the 1st operating condition and for year 2 in 

scenario 1: 

 
0

1,2,1,2,1 1,1,2,1 2,1,2,16.67( ) 0f    
                                                                            (3.50) 

 
0

1,3,1,2,1 1,1,2,1 3,1,2,15( ) 0f    
                                                                                   (3.51) 

 
0

2,3,1,2,1 2,1,2,1 3,1,2,14( ) 0f    
                                                                                   (3.52)     

   

The line-flow constraints for existing lines for the 2nd operating condition and for year 2 in 

scenario 1: 
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0

1,2,2,2,1 1,2,2,1 2,2,2,16.67( ) 0f    
                                                                        (3.53) 

 
0

1,3,2,2,1 1,2,2,1 3,2,2,15( ) 0f    
                                                                               (3.54)                                                             

 
0

2,3,2,2,1 2,2,2,1 3,2,2,14( ) 0f    
                                                                              (3.55) 

 

The line-flow constraints for existing lines for the 1st operating condition and for year 3 in 

scenario 1: 

 
0

1,2,1,3,1 1,1,3,1 2,1,3,16.67( ) 0f    
                                                                         (3.56) 

 
0

1,3,1,3,1 1,1,3,1 3,1,3,15( ) 0f    
                                                                                (3.57) 

 
0

2,3,1,3,1 2,1,3,1 3,1,3,14( ) 0f    
                                                                                (3.58) 

 

The line-flow constraints for existing lines for the 2nd operating condition and for year 3 in 

scenario 1: 

 
0

1,2,2,3,1 1,2,3,1 2,2,3,16.67( ) 0f    
                                                                         (3.59) 

 
0

1,3,2,3,1 1,2,3,1 3,2,3,15( ) 0f    
                                                                                (3.60) 

 
0

2,3,2,3,1 2,2,3,1 3,2,3,14( ) 0f    
                                                                              (3.61) 

The line-flow constraints for existing lines in the 1st operating condition and for year 1 in 

scenario 2: 

 
0

1,2,1,1,2 1,1,1,2 2,1,1,26.67( ) 0f    
                                                                         (3.62) 

 
0

1,3,1,1,2 1,1,1,2 3,1,1,25( ) 0f    
                                                                                (3.63) 

 
0

2,3,1,1,2 2,1,1,2 3,1,1,24( ) 0f    
                                                                                (3.64) 
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The line-flow constraints for existing lines in the 2nd operating condition and for year 1 in 

scenario 2: 

 
0

1,2,2,1,2 1,2,1,2 2,2,1,26.67( ) 0f    
                                                                       (3.65) 

 
0

1,3,2,1,2 1,2,1,2 3,2,1,25( ) 0f    
                                                                              (3.66) 

 
0

2,3,2,1,2 2,2,1,2 3,2,1,24( ) 0f    
                                                                              (3.67) 

 

The line-flow constraints for existing lines for the 1st operating condition and for year 2 in 

scenario 2: 

 
0

1,2,1,2,2 1,1,2,2 2,1,2,26.67( ) 0f    
                                                                       (3.68) 

 
0

1,3,1,2,2 1,1,2,2 3,1,2,25( ) 0f    
                                                                              (3.69) 

 
0

2,3,1,2,2 2,1,2,2 3,1,2,24( ) 0f    
                                                                              (3.70) 

 

The line-flow constraints for existing lines  for the 2nd operating condition and for year 2 in 

scenario 2: 

 
0

1,2,2,2,2 1,2,2,2 2,2,2,26.67( ) 0f    
                                                                       (3.71) 

 
0

1,3,2,2,2 1,2,2,2 3,2,2,25( ) 0f    
                                                                              (3.72) 

 
0

2,3,2,2,2 2,2,2,2 3,2,2,24( ) 0f    
                                                                            (3.73)  

 

The line-flow constraints for existing lines for the 1st operating condition and for year 3 in 

scenario 2: 

 
0

1,2,1,3,2 1,1,3,2 2,1,3,26.67( ) 0f    
                                                                         (3.74) 

 
0

1,3,1,3,2 1,1,3,2 3,1,3,25( ) 0f    
                                                                                (3.75)     
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0

2,3,1,3,2 2,1,3,2 3,1,3,24( ) 0f    
                                                                             (3.76) 

 

The line-flow constraints for existing lines for the 2nd operating condition and for year 3 in 

scenario 2: 

 
0

1,2,2,3,2 1,2,3,2 2,2,3,26.67( ) 0f    
                                                                     (3.77)   

 
0

1,3,2,3,2 1,2,3,2 3,2,3,25( ) 0f    
                                                                            (3.78) 

 
0

2,3,2,3,2 2,2,3,2 3,2,3,24( ) 0f    
                                                                          (3.79) 

 

The second set of constraints are line-flow constraints for existing line for the whole planning 

horizon 

The number of these equality constraints can be computed using the formula 

=E*C*T*W 

=3*2*3*2 

=36 

 

3) Line-flow constraints for candidate lines 

The line-flow constraints for candidate lines in the 1st operating condition and for year 1 in 

scenario 1: 

SP 

1,2,1,1,1 1,1,1,1 2,1,1,1 1,0 1,1,110( ) (1 )cf M X X     
                                      (3.80) 

2,3,1,1,1 2,1,1,1 3,1,1,1 2,0 2,1,16.67( ) (1 )cf M X X     
                                 (3.81) 

Adaptation 
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1,2,1,1,1 1,1,1,1 2,1,1,1 1,0 1,1 1,1,110( ) (1 )cf M X X X      
                           (3.82) 

2,3,1,1,1 2,1,1,1 3,1,1,1 2,0 2,1 2,1,16.67( ) (1 )cf M X X X      
                    (3.83) 

The line-flow constraints for candidate lines in the 1st operating condition and for year 2 in 

scenario 1: 

SP 

1,2,2,1,1 1,2,1,1 2,2,1,1 1,0 1,1,110( ) (1 )cf M X X     
                                        (3.84)         

2,3,2,1,1 2,2,1,1 3,2,1,1 2,0 2,1,110( ) (1 )cf M X X     
                                       (3.85) 

Adaptation 

1,2,2,1,1 1,2,1,1 2,2,1,1 1,0 1,1 1,1,110( ) (1 )cf M X X X      
                           (3.86)         

2,3,2,1,1 2,2,1,1 3,2,1,1 2,0 2,1 2,1,110( ) (1 )cf M X X X      
                        (3.87) 

The line-flow constraints for candidate lines in the 1st operating condition and for year 2 in 

scenario 1: 

SP 

1,2,1,2,1 1,1,2,1 2,1,2,1 1,0 1,1,1 1,2,110( ) (1 )cf M X X X      
                                 (3.88) 

2,3,1,2,1 2,1,2,1 3,1,2,1 2,0 2,1,1 2,2,16.67( ) (1 )cf M X X X      
                (3.89) 

Adaptation 

1,2,1,2,1 1,1,2,1 2,1,2,1 1,0 1,1 1,2 1,2,110( ) (1 )cf M X X X X       
           (3.90) 

2,3,1,2,1 2,1,2,1 3,1,2,1 2,0 2,1 2,2 2,2,16.67( ) (1 )cf M X X X X       
    (3.91) 

The line-flow constraints for candidate lines in the 2nd operating condition and for year 2 in 

scenario 1: 

SP 



www.manaraa.com

46 
 

  

1,2,2,2,1 1,2,2,1 2,2,2,1 1,0 1,1,1 1,2,110( ) (1 )cf M X X X      
                    (3.92) 

 2,3,2,2,1 2,2,2,1 3,2,2,1 2,0 2,1,1 2,2,16.67( ) 1cf M X X X      
             (3.93) 

Adaptation 

1,2,2,2,1 1,2,2,1 2,2,2,1 1,0 1,1 1,2 1,2,110( ) (1 )cf M X X X X       
        (3.94) 

2,3,2,2,1 2,2,2,1 3,2,2,1 2,0 2,1 2,2 2,2,16.67( ) (1 )cf M X X X X       
 (3.95) 

The line-flow constraints for candidate lines in the 1st operating condition and for year 3 in 

scenario 1: 

SP 

1,2,1,3,1 1,1,3,1 2,1,3,1 1,0 1,1,1 1,2,1 1,3,110( ) (1 )cf M X X X X       
           (3.96) 

2,3,1,3,1 2,1,3,1 3,1,3,1 2,0 2,1,1 2,2,1 2,3,16.67( ) (1 )cf M X X X X       
    (3.97) 

Adaptation 

1,2,1,3,1 1,1,3,1 2,1,3,1 1,0 1,1 1,2 1,3 1,3,110( ) (1 )cf M X X X X X        
 (3.98) 

2,3,1,3,1 2,1,3,1 3,1,3,1 2,0 2,1 2,2 2,3 2,3,16.67( ) (1 )cf M X X X X X        
   (3.99)             

The line-flow constraints for candidate lines in the 2nd operating condition and for year 3 in 

scenario 1: 

SP 

1,2,2,3,1 1,2,3,1 2,2,3,1 1,0 1,1,1 1,2,1 1,3,110( ) (1 )cf M X X X X       
      (3.100) 

2,3,2,3,1 2,2,3,1 3,2,3,1 2,0 2,1,1 2,2,1 2,3,16.67( ) (1 )cf M X X X X       
    (3.101) 

Adaptation 

1,2,2,3,1 1,2,3,1 2,2,3,1 1,0 1,1 1,2 1,3 1,3,110( ) (1 )cf M X X X X X        
 (3.102) 
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2,3,2,3,1 2,2,3,1 3,2,3,1 2,0 2,1 2,2 2,3 2,3,16.67( ) (1 )cf M X X X X X        
(3.103) 

The line-flow constraints for candidate lines in the 1st operating condition and for year 1 in 

scenario 2: 

SP 

1,2,1,1,2 1,1,1,2 2,1,1,2 1,0 1,1,210( ) (1 )cf M X X     
                                   (3.104) 

2,3,1,1,2 2,1,1,2 3,1,1,2 2,0 2,1,26.67( ) (1 )cf M X X     
                              (3.105) 

Adaptation 

1,2,1,1,2 1,1,1,2 2,1,1,2 1,0 1,1 1,1,210( ) (1 )cf M X X X      
                      (3.106) 

2,3,1,1,2 2,1,1,2 3,1,1,2 2,0 2,1 2,1,26.67( ) (1 )cf M X X X      
               (3.107) 

The line-flow constraints for candidate lines in the 2nd operating condition and for year 1 in 

scenario 2: 

SP 

1,2,2,1,2 1,2,1,2 2,2,1,2 1,0 1,1,210( ) (1 )cf M X X     
                                 (3.108) 

2,3,2,1,2 2,2,1,2 3,2,1,2 2,0 2,1,210( ) (1 )cf M X X     
                              (3.109) 

Adaptation 

1,2,2,1,2 1,2,1,2 2,2,1,2 1,0 1,1 1,1,210( ) (1 )cf M X X X      
                   (3.110) 

2,3,2,1,2 2,2,1,2 3,2,1,2 2,0 2,1 2,1,210( ) (1 )cf M X X X      
                 (3.111) 

The line-flow constraints for candidate lines in the 1st operating condition and for year 2 in 

scenario 2: 

SP 

1,2,1,2,2 1,1,2,2 2,1,2,2 1,0 1,1,2 1,2,210( ) (1 )cf M X X X      
                 (3.112) 
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2,3,1,2,2 2,1,2,2 3,1,2,2 2,0 2,1,2 2,2,26.67( ) (1 )cf M X X X      
          (3.113) 

Adaptation 

1,2,1,2,2 1,1,2,2 2,1,2,2 1,0 1,1 1,2 1,2,210( ) (1 )cf M X X X X       
     (3.114) 

2,3,1,2,2 2,1,2,2 3,1,2,2 2,0 2,1 2,2 2,2,26.67( ) (1 )cf M X X X X       
   (3.115) 

The line-flow constraints for candidate lines in the 2nd operating condition and for year 2 in 

scenario 2: 

SP 

1,2,2,2,2 1,2,2,2 2,2,2,2 1,0 1,1,2 1,2,210( ) (1 )cf M X X X      
            (3.116) 

2,3,2,2,2 2,2,2,2 3,2,2,2 2,0 2,1,2 2,2,26.67( ) (1 )cf M X X X      
     (3.117) 

Adaptation 

1,2,2,2,2 1,2,2,2 2,2,2,2 1,0 1,1 1,2 1,2,210( ) (1 )cf M X X X X       
 (3.118)    

2,3,2,2,2 2,2,2,2 3,2,2,2 2,0 2,1 2,2 2,2,26.67( ) (1 )cf M X X X X       
 (3.119) 

The line-flow constraints for candidate lines in the 1st operating condition and for year 3 in 

scenario 2: 

SP 

1,2,1,3,2 1,1,3,2 2,1,3,2 1,0 1,1,2 1,2,2 1,3,210( ) (1 )cf M X X X X       
 (3.120)    

2,3,1,3,2 2,1,3,2 3,1,3,2 2,0 2,1,2 2,2,2 2,3,26.67( ) (1 )cf M X X X X       
(3.121) 

Adaptation 

1,2,1,3,2 1,1,3,2 2,1,3,2 1,0 1,1 1,2 1,3 1,3,210( ) (1 )cf M X X X X X        
(3.122) 

1,2,1,3,2 1,1,3,2 2,1,3,2 1,0 1,1 1,2 1,3 1,3,210( ) (1 )cf M X X X X X        
 (3.123) 
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The line-flow constraints for candidate lines in the 2nd operating condition and for year 3 in 

scenario 2: 

SP 

1,2,2,3,2 1,2,3,2 2,2,3,2 1,0 1,1,2 1,2,2 1,3,210( ) (1 )cf M X X X X       
  (3.124) 

2,3,2,3,2 2,2,3,2 3,2,3,2 2,0 2,1,2 2,2,2 2,3,26.67( ) (1 )cf M X X X X       
 (3.125) 

Adaptation 

 
1,2,2,3,2 1,2,3,2 2,2,3,2 1,0 1,1 1,2 1,3 1,3,210( ) (1 )cf M X X X X X        

 (3.126) 

2,3,2,3,2 2,2,3,2 3,2,3,2 2,0 2,1 2,2 2,3 2,3,26.67( ) (1 )cf M X X X X X        
(3.127) 

The third set of constraints are line-flow constraints for candidate line for the whole planning 

horizon. 

The number of these inequality constraints can be computed using the formula described below. 

The 2 in the formula is because of the absolute value on the constraints. 

=2*B*C*T*W 

=2*2*3*2*2 

=48 

SP and adaptation have equal number of these types of constraints but they are formulated 

differently. 

 

4) Capacity limit constraints for candidate lines 

The line-flow constraints for candidate lines in the 1st operating condition and for year 1 in 

scenario 1: 

SP 

1,2,1,1,1 1,2,max 1,0 1,1,1( )cf f X X 
                                                                              (3.128)                                                                                                                                                 
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2,3,1,1,1 2,3,max 2,0 2,1,1( )cf f X X 
                                                                            (3.129)           

Adaptation 

1,2,1,1,1 1,2,max 1,0 1,1 1,1,1( )cf f X X X  
                                                                   (3.130)              

2,3,1,1,1 2,3,max 2,0 2,1 2,1,1( )cf f X X X  
                                                              (3.131)                          

The line-flow constraints for candidate lines in the 2nd operating condition and for year 1 in 

scenario 1: 

SP 

1,2,2,1,1 1,2,max 1,0 1,1,1( )cf f X X 
                                                                           (3.132)                                                         

2,3,2,1,1 2,3,max 2,0 2,1,1( )cf f X X 
                                                                           (3.133)                          

Adaptation 

1,2,2,1,1 1,2,max 1,0 1,1 1,1,1( )cf f X X X  
                                                                (3.134)             

2,3,2,1,1 2,3,max 2,0 2,1 2,1,1( )cf f X X X  
                                                             (3.135)                 

The line-flow constraints for candidate lines in the 1st operating condition and for year 2 in 

scenario 1: 

SP 

1,2,1,2,1 1,2,max 1,0 1,1,1 1,2,1( )cf f X X X  
                                                            (3.136)                                                                                              

2,3,1,2,1 2,3,max 2,0 2,1,1 2,2,1( )cf f X X X  
                                                           (3.137)                     

Adaptation 

1,2,1,2,1 1,2,max 1,0 1,1 1,2 1,2,1( )cf f X X X X   
                                                 (3.138)                                                                    

2,3,1,2,1 2,3,max 2,0 2,1 2,2 2,2,1( )cf f X X X X   
                                              (3.139)                          
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The line-flow constraints for candidate lines in the 2nd operating condition and for year 2 in 

scenario 1: 

SP 

1,2,2,2,1 1,2,max 1,0 1,1,1 1,2,1( )cf f X X X  
                                                            (3.140)                                                                         

2,3,2,2,1 2,3,max 2,0 2,1,1 2,2,1( )cf f X X X  
                                                         (3.141)                                                                            

Adaptation 

1,2,2,2,1 1,2,max 1,0 1,1 1,2 1,2,1( )cf f X X X X   
                                                (3.142)                                                    

2,3,2,2,1 2,3,max 2,0 2,1 2,2 2,2,1( )cf f X X X X   
                                               (3.143)                                                          

The line-flow constraints for candidate lines in the 1st operating condition and for year 3 in 

scenario 1: 

SP 

1,2,1,3,1 1,2,max 1,0 1,1,1 1,2,1 1,3,1( )cf f X X X X   
                                             (3.144)                                                             

2,3,1,3,1 2,3,max 2,0 2,1,1 2,2,1 2,3,1( )cf f X X X X   
                                                                  

Adaptation 

1,2,1,3,1 1,2,max 1,0 1,1 1,2 1,3 1,3,1( )cf f X X X X X    
                                   (3.145)                                                         

2,3,1,3,1 2,3,max 2,0 2,1 2,2 2,3 2,3,1( )cf f X X X X X    
                                (3.146)                                                      

The line-flow constraints for candidate lines in the 2nd operating condition and for year 3 in 

scenario 1: 

SP 

1,2,2,3,1 1,2,max 1,0 1,1,1 1,2,1 1,3,1( )cf f X X X X   
                                            (3.147)                                                   

2,3,2,3,1 2,3,max 2,0 2,1,1 2,2,1 2,3,1( )cf f X X X X   
                                      (3.148)                                                                            

Adaptation 
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1,2,2,3,1 1,2,max 1,0 1,1 1,2 1,3 1,3,1( )cf f X X X X X    
                                   (3.149)             

2,3,2,3,1 2,3,max 2,0 2,1 2,2 2,3 2,3,1( )cf f X X X X X    
                                (3.150) 

The line-flow constraints for candidate lines in the 1st operating condition and for year 1 in 

scenario 2: 

SP 

1,2,1,1,2 1,2,max 1,0 1,1,2( )cf f X X 
                                                                             (3.151) 

2,3,1,1,2 2,3,max 2,0 2,1,2( )cf f X X 
                                                                          (3.152) 

Adaptation 

1,2,1,1,2 1,2,max 1,0 1,1 1,1,2( )cf f X X X  
                                                               (3.153) 

2,3,1,1,2 2,3,max 2,0 2,1 2,1,2( )cf f X X X  
                                                            (3.154) 

The line-flow constraints for candidate lines in the 2nd operating condition and for year 1 in 

scenario 2: 

SP 

1,2,2,1,2 1,2,max 1,0 1,1,2( )cf f X X 
                                                                       (3.155)                                                                              

2,3,2,1,2 2,3,max 2,0 2,1,2( )cf f X X 
                                                                       (3.156) 

Adaptation 

1,2,2,1,2 1,2,max 1,0 1,1 1,1,2( )cf f X X X  
                                                          (3.157)                                                       

2,3,2,1,2 2,3,max 2,0 2,1 2,1,2( )cf f X X X  
                                                        (3.158)                                             

The line-flow constraints for candidate lines in the 1st operating condition and for year 2 in 

scenario 2: 

SP 
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1,2,1,2,2 1,2,max 1,0 1,1,2 1,2,2( )cf f X X X  
                                                        (3.159)  

2,3,1,2,2 2,3,max 2,0 2,1,2 2,2,2( )cf f X X X  
                                                        (3.160) 

Adaptation 

1,2,1,2,2 1,2,max 1,0 1,1 1,2 1,2,2( )cf f X X X X   
                                             (3.161) 

2,3,1,2,2 2,3,max 2,0 2,1 2,2 2,2,2( )cf f X X X X   
                                         (3.162) 

The line-flow constraints for candidate lines in the 1st operating condition and for year 3 in 

scenario 2: 

SP 

1,2,1,3,2 1,2,max 1,0 1,1,2 1,2,2 1,3,2( )cf f X X X X   
                                        (3.163) 

2,3,1,3,2 2,3,max 2,0 2,1,2 2,2,2 2,3,2( )cf f X X X X   
                                       (3.164) 

Adaptation 

1,2,1,3,2 1,2,max 1,0 1,1 1,2 1,3 1,3,2( )cf f X X X X X    
                                    (3.165) 

1,2,1,3,2 2,3,max 1,0 1,1 1,2 1,3 1,3,2( )cf f X X X X X    
                                    (3.166) 

The line-flow constraints for candidate lines in the 2nd operating condition and for year 3 in 

scenario 2: 

1,2,2,3,2 1,2,max 1,0 1,1,2 1,2,2 1,3,2( )cf f X X X X   
                                          (3.167) 

2,3,2,3,2 2,3,max 2,0 2,1,2 2,2,2 2,3,2( )cf f X X X X   
                                       (3.168) 

Adaptation 

1,2,2,3,2 1,2,max 1,0 1,1 1,2 1,3 1,3,2( )cf f X X X X X    
                                   (3.169) 

2,3,2,3,2 2,3,max 2,0 2,1 2,2 2,3 2,3,2( )cf f X X X X X    
                             (3.170) 
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The fourth set of constraints are capacity limits for candidate lines for the whole planning 

horizon. 

The number of these inequality constraints can be computed using the formula described below. 

The 2 in the formula is because of the absolute value on the constraints. 

=2*B*C*T*W 

=2*2*3*2*2 

=48 

SP and adaptation have equal number of these types of constraints but they are formulated 

differently. 

 

5.) Special constraints unique to both approaches 

SP 

 A transmission candidate can only be invested in a scenario once (1st candidate): 

1,0 1,1,1 1,2,1 1,3,1 1X X X X   
                                                                                     (3.171)   

1,0 1,1,2 1,2,2 1,3,2 1X X X X   
                                                                                  (3.172) 

A transmission candidate can only be invested in a scenario once (2nd candidate):

2,0 2,1,1 2,2,1 2,3,1 1X X X X   
                                                                                 (3.173) 

2,0 2,1,2 2,2,2 2,3,2 1X X X X   
                                                                                (3.174) 

Adaptation 

Special constraints (Number 1) 

This constraints ensures that the 1st candidate can only be invested in the trajectory once: 

1,0 1,1 1,2 1,3 1X X X X   
                                                                            (3.175)                                                                                             

This constraints ensures that the 2nd candidate can only be invested in the trajectory once 
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2,0 2,1 2,2 2,3 1X X X X   
                                                                           (3.176)                                                                                        

Special constraints (Number 2) 

This constraints ensures that if candidate is invested in the core-trajectory it is not available to be 

adapted to a scenario (i.e. for the 1st candidate and the 1st scenario): 

1,0 1,1 1,1,1 1X X X  
                                                                                         (3.177) 

1,0 1,1 1,2 1,2,1 1X X X X   
                                                                 (3.178)              

1,0 1,1 1,2 1,3 1,3,1 1X X X X X    
                                                             (3.179) 

This constraints ensures that if candidate is invested in the core-trajectory it is not available to be 

adapted to a scenario (i.e. for the 1st candidate and the 2nd scenario): 

1,0 1,1 1,1,2 1X X X  
                                                                                      (3.180) 

1,0 1,1 1,2 1,2,2 1X X X X   
                                                                    (3.181)           

1,0 1,1 1,2 1,3 1,3,2 1X X X X X    
                                                      (3.182)               

This constraints ensures that if candidate is invested in the core-trajectory it is not available to be 

adapted to a scenario (i.e. for the 2nd candidate and the 1st scenario): 

2,0 2,1 1,1,1 1X X X  
                                                                                      (3.183)          

2,0 2,1 2,2 1,2,1 1X X X X   
                                                                          (3.184) 

2,0 2,1 2,2 2,3 1,3,1 1X X X X X    
                                                 (3.185)            

This constraints ensures that if candidate is invested in the core-trajectory it is not available to be 

adapted to a scenario (i.e. for the 2nd candidate and the 2nd scenario): 
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2,0 2,1 1,1,2 1X X X  
                                                                               (3.186)  

2,0 2,1 2,2 1,2,2 1X X X X   
                                                                 (3.187)           

2,0 2,1 2,2 2,3 1,3,2 1X X X X X    
                                                (3.188)                

 

SP 

Special constraints 

= B*W 

= 2*2 

=4 

 

Adaptation 

Special constraints 1 

=B 

=2 

Special constraints 2 

=B*T*W 

=2*3*2 

=12 

 

Total number of constraints 

SP 

= NB*C*T*W+E*C*T*W+2*B*C*T*W+2*B*C*T*W+ B*W 

Adaptation 
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= NB*C*T*W+E*C*T*W+2*B*C*T*W+2*B*C*T*W+ B+ B*T*W 

 

Total number of variables 

The number of integer variables 

SP   

TBsp= B*(1+(T)*W) 

Adaptation  

TBa= B*(1+ (T)*(W+1)) 

The factor W+1 is because of the core-trajectory  

 

The number of continuous variables are 

SP 

TCsp = (E+B)*C*T*W 

Adaptation 

TCa = (E+B)*C*T*W 

 

The reason this study is useful is that it shows how these two approaches differ in 

different types of constraints unique to transmission planning. It was found that these approaches 

differ in three types of constraints, which are line-flow constraints for candidate lines, capacity 

limit constraints for candidate lines and special constraints unique to both approaches. They both 

have the same number of constraints apart from the number of   special constraints unique to 

both approaches. The number of special constraints are not large in number, so they will 

necessary increase the computational complexity for both approaches. In terms of variables, the 

only difference is the extra binary variable for the core-trajectory of adaptation. 
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CHAPTER 4. ADAPTATION FORMULATION AND PROCEDURE 

This chapter describes the mathematical formulation of the adaptation for different types 

of planning problems. The chapter also describes the procedures involved in planning using 

adaptation. Finally, the software design process is also described. 

4.1 Formulation 

This section describes the mathematical formulation for three types of planning problem. 

They are generation expansion planning, transmission expansion planning and co-optimization 

of both generation and transmission resources. 

4.1.1 Generation planning 

Nomenclature 

OMv
k,t  is the variable O&M costs of generator k, at time t   

OMF
k,t  is the fixed O&M costs of generator k, at time t   

FCk,t,w is the fuel cost of generator k, at time t in scenario w 

M is a large number 

c is the number of operating conditions in a year  

fc,t,w  is the vector of line-flows in operating condition c, at time t, in scenario w  

Pc,t,w is the vector of dispatched power in operating condition c, at time t, in scenario w 

Dc,t,w is the vector of demand for operating condition c, at time t, in scenario w 

S is the node-arc incidence matrix 

K is the generator index 

β is a trade-off parameter  

T is the planning horizon 

w designates the scenario 

hc  is the number of hours in operating condition c 
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Ik,t is the investment cost of generator k per MW at time t 

Capf
k,t  is the core-investment trajectory of generation at bus k at time t 

Capf
k,t-1  is the core-investment trajectory of generation at bus k at time t-1 

CFk is capacity factor of generator k 

∆Capk,t,w is the additional capacity needed to adapt to scenario w at bus k at time t 

Capadd
k,t is the additional capacity added to core investment trajectory at bus k at time t  

Capk,t,w is the  capacity at bus k at time t at scenario w 

Pk,t,c,w  is the dispatched power of generator k at operating condition c at time t and scenario w 

γi,j   is the element (i,j) in the susceptance matrix 

fi,j,c,t,w  is the line-flow from bus i to bus j in operating condition c at time t in scenario w for a 

candidate line  

fi,j,max    is the maximum capacity of a candidate line from bus i to bus j 

Capret
k,t  is the capacity of retired generation at bus k at time t 

θi,c,t,w  is the angle at bus i at operating condition at time t in scenario w 

θj,c,t,w is the angle at bus j at operating condition at time t in scenario w 

 

, , , , ,
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1 1 1 1 1 1 1
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   

 

  
              (4.1) 

Subject to 

, , , , , , 0c t w c t w c t wsf P D                                                                                                                   (4.2) 

, , , , , , , , , ,( ) 0i j c t w ij i c t w j c t wf                                                                                                     (4.3) 
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, , 1 , ,

f f add ret

k t k t k t k tCap Cap Cap Cap                                                                                           (4.4)  

, , , , ,

f

k t w k t k t wCap Cap Cap                                                                                                          (4.5) 

, , , , ,0 *k t c w k k t wP CF Cap                                                                                                              (4.6) 

, 0f

k tCap                                                                                                                                                       (4.7)                                                                                                                                                                                                                                                                                             

, 0add

k tCap                                                                                                                                                      (4.8)                                                                                                                            

, , 0k t wCap                                                                                                                                             (4.9)                                                                                                                       

The first term in the objective function is the additional investment for the core trajectory 

investment update and the salvage value is subtracted from the investment cost. The second term 

in the objective function is the fixed O&M costs for all generators. The third term in the 

objective function is the sum of variable O&M costs for the generators and the fuel costs for the 

generators. The fourth term in the objective is additional capacity needed to adapt to future 

scenarios at each time/stage. Discount factors is applied to all the costs. 

The fourth term is multiplied by β which is the trade-off parameter. When β is high, the 

core- trajectory investment is high and adaptation is low, while when β is low, core-trajectory 

investment is low and adaptation is high. β has to be well selected in order not to be at both 

extremes. 

          Equation (4.2) represents the power demand balance equation for all given operating 

conditions in a year, years in the planning period and all scenarios in the model. Equation (4.3) 

represents line flow constraints for existing lines for all given operating conditions in a year, all 

the years in the planning period and all scenarios in the model. Equation (4.4) is the core-

trajectory update equation for generation investment. Equation (4.5) represents adaptation from 
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the core-trajectory to different scenarios. Equation (4.6) is the allowable power a generator is 

allowed to dispatch in an operating condition. While the remaining equations (4.7, 4, 8, and 4.9) 

signifies that the decision variables involved have to be non-negative. 

4.1.2 Transmission planning 

The Transmission Expansion Problem objective is to identify which transmission lines to 

build, where to build them, the capacity of line to build and when to build the lines.  

  

MATHEMATICAL MODEL FOR TRANSMISSION PLANIING 

A classical transmission expansion problem can be formulated as follows [43] 

Min  
( , )

ij ij

i j

c x                                                                                                                                                 (4.10) 

Subject to 

                                                                                                                                            (4.11) 

 

                                                                                                             (4.12) 

 

( ) 0ij ij ij i jf x     
                                                                                                          (4.13)                                                                               

0 0,max

ij ijf f
                                                                                                                                               (4.14) 

max

ij ij ijf x f
                                                                                                                                             (4.15)                                                                                                                            

ijx Integer                                                                                                                               (4.16)                                                                                                                                  

where cij  is the cost of transmission line that goes from bus i to bus j, xij is the binary 

variable  for the  transmission candidate line that goes from bus i to bus j, s is node-arc incidence 

matrix, f is the vector of line-flows, and g is the vector of dispatched generation  and d is the 

.s f g d 

0 0 ( ) 0ij ij i jf     
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vector of demand. fij
0 is the line-flow for existing line and fij  is the line-flow for candidate 

transmission lines. 

Big-M formulation 

Transmission expansion planning is a mixed-integer non-linear optimization problem 

[44]. Due to nonlinearity in constraints (i.e.2nd Kirchhoff’s law for candidate lines) as a result of 

multiplication of candidate susceptance and angle differences, nonlinearities are transformed by 

introducing a  disjoint mixed integer  constraint with parameter Big “M”[45]. The big-M 

approach can be extended to a multi-stage/multi-period planning problem by using two 

approaches. 

Method 1  

The single stage disjunctive model can be transformed to the following equation by introducing 

big-M 

 

( ) (1 )ij ij i j jf M X                                                                                                   (4.17) 

,maxij ij jf f X                                                                                                                                    (4.18) 

The equations above can be transformed into a multi-stage formulation by using the following 

equations [46] 

1

( ) (1 )
T

ijt ij it jt jt

t

f M X  


                                                                                 (4.19) 

,max

1

T

ijt ij jt

t

f f X


                                                                                                                     (4.20) 

1

1
T

jt

t

X


                                                                                                                                          (4.21) 
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The second approach differs from the first approach in the way that you don’t have to 

repeat previous binary investment decision for previous time stages at a future time stage in the 

line flow constraints for candidate lines. The line-flow constraints for transmission candidates 

just contain one binary investment decision [47]. 

Mixed integer linear programs 

Mixed integer programs are optimization programs with mixed decision variables (i.e. 

integer and continuous variables).  Mixed integer programs are NP-Hard problems and 

sometimes very difficult to solve. Transmission expansion planning problems are a special case 

of MILPs called binary mixed integer programming, since the binary variables takes either 0 or 

1. A standard mixed integer program can be formulated as follows. 

 

1 2
,

T T

x z
Min f x f z                                                                                                                          (4.22) 

1 2A x A x                                                                                                                                         (4.23) 

 z Integer                                                                                                                        (4.24) 

Methods for solving mixed integer linear problems (MILPs) 

There are several methods for solving mixed integer problems. This sections describes various 

known approaches and also discusses their strength and weaknesses. 

1) Branch and Bound 

2) Cutting Plane 

3) Branch and Cut 

4) Heuristics 
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Branch and Bound 

The first step in B&B is to solve the LP relaxation problem, by relaxation we mean that 

the integer constraints are converted to continuous variables. This algorithm develops a tree 

based on LP relaxation and explores the branches of the tree. 

Cutting Plane 

The cutting plane is a well-known approach for solving MILPs. The idea behind the 

cutting plane approach is to iteratively add cut (i.e. linear inequalities) to a linear constraints of 

an LP until the optimal basic feasible solution becomes integer.  

Branch and cut  

This approach is the combination of B&B and the cutting plane method. 

Heuristics  

The disadvantage with the heuristics is that it finds approximate solutions and not optimal 

solutions. However, heuristics tend to be faster than algorithms that can solve for the optimal 

solution. Therefore a trade-off needs to be established between accuracy and time required to 

solve the MILP problem. An example of  this method’s application can be found in 48. 

Mathematical formulation of  adaptation 

Nomenclature  

S is the node-arc incidence matrix 

K is the generator index 

Beta is a trade-off parameter  

T is the planning horizon 

w designates the scenario 

ICj  is the investment cost of the jth transmission line candidate 
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hc  is the number of hours in operating condition c 

D is decision stages 

OMv
k,t  O&M costs of generator k, at time t   

FCk,t,w is the fuel cost of generator k, at time t in scenario w 

Pk,t,c, w  is the dispatched power of generator k, at operating condition c at time t in scenario w 

Xj,d(t)  is the binary transmission candidate at decision stage d as a function of time 

Xj,d(t),w  is the binary transmission candidate at decision stage d in scenario w 

M is a large number 

C is the number of operating conditions in a year  

fc,t,w  is the vector of line-flows in operating condition c, at time t, in scenario w  

Pc,t,w is the vector of dispatched power in operating condition c, at time t, in scenario w 

Dc,t,w is the vector of demand for operating condition c, at time t, in scenario w 

 γi,j   is the element (i,j) in the susceptance matrix 

d(t) is decision stage as a function of time 

d(T) is the end of the planning horizon  

fi,j,c,t,w  is the line-flow from bus i to bus j in operating condition c at time t in scenario w for a 

candidate line  

fi,j,c,t,w
0

  is the line-flow from bus i to bus j in operating condition c at time t in scenario w for a 

candidate line 

fi,j,max
0
  is the maximum capacity of an existing line from bus i to bus j 

fi,j,max    is the maximum capacity of a candidate  line from bus i to bus j 

θi,c,t,w  is the angle at bus i at operating condition c at time t in scenario w 

θj,c,t,w  is the angle at bus j at operating condition c  at time t in scenario w 
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, ( ) , ( ) , , , , , ,

1 1 1 1 1 1

, ( ),

1 1 2

( ( ))
D J W T K C

V

j d t j d t k t k t w k t c w c

d j w t k c

W J D

j j d t w

w j d

Min IC X OM FC P h

IC X

     

  

 



  


   (4.25) 

Subject to 

, , , , , , 0c t w c t w c t wsf P D                                                                                                         (4.26)  

0

, , , , , , , , , ,( ) 0i j c t w ij i c t w j c t wf                                                                                          (4.27) 

 

, , , , , , , , , , , ( )

1

, ( ),

1

( ) (1 [ ( ), ( )]

[ ( ), ( 1)]) , ,

D

i j c t w ij i c t w j c t w j d t

d

W D

j d t w

w d D

f M X d t d T

X d t d t w d t

  


 

   

  




             (4.28) 

0 0

, , , , , ,maxi j c t w i jf f                                                                                                                             (4.29)      

 

, , , , , ,max , ( )

1

, ( ),

1

( [ ( ), ( )]

[ ( ), ( 1)]) , ,

D

i j c t w i j j d t

d

W D

j d t w

w d D

f f X d t d T

X d t d t w d t



 



  




                                                              (4.30)                                                        

 

, ( ) {0,1}j d tX                                                                                                                                    (4.31)  

, ( ), {0,1}j d t wX                                                                                                                              (4.32) 

This constraints ensures that no candidate is invested twice in the core-trajectory solution 

, ( )

1

1
D

j d t

d

X j


                                                                                                                             (4.33)  
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This constraints ensure that at a particular stage if a transmission is invested in the core-

trajectory, it is not available to be adapted to scenarios. 

   , (1) , ( ) , ( ),

2 1

, 2
D D W

j d j d t j d t w

d d D w

X X X j D
  

                                     (4.34)                                      

In the objective function in eqn (4.25), the first term represents the cost of the core –

trajectory for transmission investment, the second term is the costs of dispatched generation 

under all considered scenarios. The third term represents the costs of adaptive transmission 

investment under a given scenario. Discount factors is applied to all the costs. 

Equation (4.26) represents the power demand balance equation for all given operating 

conditions in a year, all the years in the planning horizon and all scenarios in the model. 

Equation (4.27) represents line flow constraints for existing lines for all given operating 

conditions in a year, all the years in the planning horizon and all scenarios in the model. . 

Equation (4.28) represents line flow constraints for candidate lines for all given operating 

conditions in a year, all the years in the planning horizon and all scenarios in the model.  

The first summation in equation (4.28) is the core trajectory for transmission investment. 

The investment decision for the core-trajectory is not assumed to be made every year but at 

designated decision stages. For instance, assuming a study has a planning horizon of 20 years 

and there are four decision stages ( t=0  (i.e. the initial decision), 5th, 10th  15th year). The 

transmission candidate for the initial decision is available from the beginning of year 1 to the end 

of the planning horizon (i.e. [d (0), d (20)]), likewise the transmission candidate at the 5th year is 

available from the beginning of year 5 to the end of the planning horizon (i.e. [d (5), d (20)]).      

The second summation in equation (4.28) is the adaptable transmission investment. The 

adaptable transmission solution is assumed to be made at designated decision stages just like the 
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core trajectory for transmission investment. However. adaptable transmission investment is 

formulated differently, because unlike the core transmission investment which is updated based 

on previous investment, investment decisions at a decision stage does not depend on the previous 

adapted investment in a particular scenario. At the initial stage there is no adaptation, so 

adaptation starts after uncertainty is revealed. 

         Equation (4.29) represents the capacity limit for all existing lines. Equation (4.30) 

represents the capacity limit for all candidate transmission lines.  

         

Transportation model as a lower bound 

Solving the transportation model of TEP is fast and serves as a lower bound to the 

solving the TEP model. We can exploit the solution of the transportation model to help solve our 

system faster. 

 

( , )

ij ij

i j

Min c x
                                                                                                           (4.35) 

Subject to 

 

.s f g d 
                                                                                                             (4.36) 

 

0 0

,maxij ijf f
                                                                                                             (4.37) 

 

,maxij ij ijf x f
                                                                                                        (4.38) 

 

 

                                                                                                     (4.39) 

 

 ijx Integer                                                                                                                    (4.40)   

where cij  is the cost of transmission line that goes from bus i to bus j, xij is the binary 

variable for transmission candidate line that goes from bus i to bus j, s is node-arc incidence 

,max0 i ig g 
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matrix, f is the vector of line-flows, g is the vector of dispatched generation and d is the vector of 

demand. f0
ij is the line-flow for existing line and fij  is the line-flow for candidate transmission 

lines. 

 
4.1.3 Co-optimization 

In tradition power system planning, Generation Expansion Planning (GEP) and 

Transmission Expansion Planning (TEP) are done separately. This has led to poor decision 

making due to ineffective co-ordination of both kind of expansion plans. This also leads to sub-

optimal power system expansion decisions. Co-optimization is different from  multi-objective 

optimization (or programming), also known as multi-criteria or multi-attribute optimization, 

which is the process of simultaneously optimizing two or more conflicting objectives subject to 

certain constraints. According to [49] “Co-optimization is the simultaneous identification of two 

or more classes of investment decisions within one optimization strategy”. 

 

Figure 10: Traditional approach 

 

Figure 11: Better approach 
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Figure 12: Best approach 

Recent application of co-optmization in power systems 

Hedman et al. [50] applied to the concept of co-optimization to generation unit 

commitment and transmission switching considering N-1 reliability. The concept of transmission 

switching refers to the switching of lines in and out of the network to maximize economic 

benefits. The authors show the impact of transmission switching on optimal generation unit 

commitment. Co-optimization has been applied to power markets. Tan et al. [51] applied co-

optimization to energy and reserves supplied by both demand and supply participants in an 

electric market . 

However, it must be recognized that co-optimization, as a term used to refer to 

simultaneous identification of related decisions within a single optimization strategy, should not 

be understood to suggest any particular structural characteristics, at least not by virtue of their 

being co-optimization problems. Specifically, we may represent a co-optimization problem as: 

                 Problem C: 

                       min f(x,y) 

                       subject to 

                       g(x,y)<=b 

                       h(x,y)=c 

The decision variables, x, and y, are related through the constraints g and h, i.e., one or more of 

the constraints contain both types of decision variables. Co-optimization means addressing this 
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problem with both sets x and y remaining decision variables. In this sense, co-optimization is just 

the correct statement of problems that have heretofore been solved approximately, as follows: 

              Problem C-fixed: 

                     min f(x,yf) 

                     subject to 

                     g(x,yf)<=b 

                     h(x,yf)=c 

where yf represents fixed values of y. When we solve Problem C-fixed instead of Problem C, we 

do so because Problem C is too computationally challenging to solve. 

 

The point here is that the term “Co-optimization,” when used to identify a problem we intend to 

solve, implies that we think we have the computational capabilities to solve the problem exactly 

(as Problem C) rather than approximately (as problem C-fixed). 

 

Deterministic formulation of co-optimization 

 

This section describes the mathematical model for co-optimization in a deterministic 

framework.  

Nomenclature 

S is the node-arc incidence matrix 

K is the generator index 

hc  is the number of hours in operating condition c 

D is the number of decision stages 

FCk,t is the fuel cost of generator k, at time t  

Xj,d(t) is the binary transmission candidate at decision stage d as a function of time 
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M is a large number 

c is operating conditions in a year  

fc,t is the vector of line-flows in operating condition c, at time t  

Pc,t is the vector of dispatched power in operating condition c, at time t 

Dc,t is the vector of demand for operating condition c, at time t 

OMv
k,t  is the operation and maintenance costs of generator k, at time t  

Capadd
k,d(t) is the additional capacity added at bus k at decision stage d(t) 

Capk,d(t)  is the  capacity at bus k at decision stage d(t) 

 

, , ( ) , , ( )

1 1 1 1

, , , , , ,

1 1 1 1 1

( )

D J D K
add

j t j d t k t k d t

d j d k

T K C T K
V F

k t k t k t c c k t k t

t k c t k

Min IC X IC Cap

OM FC P h OM Cap

   

    



 
   

 

 

  
                    (4.41) 

 

Subject to 

 

Transmission constraints 

 

. , , 0c t c t c tsf P D  
                                                                                                    (4.42) 

 

, , , , , , ,( ) 0i j c t ij i c t j c tf     
                                                                                           (4.43) 

 

, , , , , , , , ( )

1

( ) 1
D

i j c t ij i c t j c t j d t

d

f M X  


 
    

 


                                                (4.44)                                              

0

, , , , ,maxi j c t i jf f
                                                                                                               (4.45)                                                                                              

 

, , , , ,max . ( )

1

D

i j c t i j j d t

d

f f X


 
                                                                                         (4.46) 
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 , ( ) 0,1j d tX 
                                                                                                                    (4.47)  

This constraint ensures that a line is only built once 

 

. ( )

1

1
D

j d t

d

X



                                                                                                                   (4.48) 

Generation constraints 

  

                                                                                                                (4.49)  

 

, ( ) , ( 1) , ( )

add

k d t k d t k d tCap Cap Cap 
                                                                            (4.50) 

 

, , , ( )0 *k t c k d tP CF Cap 
                                                                                        (4.51) 

 

Mathematical formulation  co-optimization using adaptation  

This section describes the mathematical formulation of co-optimization of generation and 

transmission resources using adaptation. In this co-optimization formulation the transmission 

candidates decision variables are modelled as integer variables, while the generation decision 

variables are modelled as continuous variables 

Nomenclature 

S is the node-arc incidence matrix 

K is the generator index 

hc  is the number of hours in operation condition c 

D is the number of decision stages 

FCk,t,w  is the fuel cost of generator k, at time t in scenario w 

Xj,d(t) is the binary transmission candidate at decision stage d as a function of time 

Xj,d(t),w is the binary transmission candidate at decision stage d as a function of time in scenario w 

M is a large number 

, ( ) 0add

k d tCap 
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ICj,d(t)  is the investment cost of transmission candidate j at time d(t) 

ICk,d(t)  is the investment cost  of generation at bus k at time d(t) 

fc,t,w  is the vector of line-flows in operating condition c, at time t, in scenario w  

Pc,t,w is the vector of dispatched power in operating condition c, at time t, in scenario w 

Dc,t,w is the vector of demand for operating condition c, at time t, in scenario w 

γi,j   is the element (i,j) in the susceptance matrix 

d(t) is decision stage as a function of time 

d(T) is the end of the planning horizon  

fi,j,c,t,w  is the line-flow from bus i to bus j in operating condition c at time t in scenario w for a 

candidate line  

fi,j,c,t,w
0  is the line-flow from bus i to bus j in operating condition c at time t in scenario w for an 

existing line 

fi,j,max
0  is the maximum capacity of an existing line from bus i to bus j 

fi,j,max    is the maximum capacity of a candidate  line from bus i to bus j 

Capf
k,d(t)  is the core-investment trajectory of generation at bus k at time d(t) 

Capf
k,d(t-1)  is the core-investment trajectory of generation at bus k at time d(t-1) 

CFk is capacity factor of generator k 

∆Capk,d(t),w is the additional capacity needed to adapt to scenario w at bus k at time d(t) 

Capadd
k,d(t) is the additional capacity added to core investment trajectory at bus k at time d(t)  

Capk,d(t),w is the  capacity at bus k at time d(t) at scenario w 

Pk,t,c,w  is the dispatched power of generator k at operating condition c at time t in scenario w 

θi,c,t,w  is the angle at bus i at operating condition at time t in scenario w 

θj,c,t,w  is the angle at bus j at operating condition at time t in scenario w 



www.manaraa.com

75 
 

  

, ( ) , ( ) , ( ) , ( )

1 1 1 1

, , , , , , , , ,

1 1 1 1 1 1 1

, ( ) , ( ), , ( ) , ( ),

1 2 1 2

( ( ))

D J D K
add

j d t j d t k d t k d t

d j d k

W T K W T K C
F V

k t k t w k t k t w k t c w C

w t k w t k c

W J D D

j d t j d t w j d t k d t w

w j d j d

Min IC X IC Cap

OM Cap OM FC P h

IC X IC Cap 

   

      

   



  

  

 

  

 
1

W J

w



(4.52)                

                                                                                                                                            

Subject to 

 

, , , , , , 0c t w c t w c t wsf P D                                                                                                           (4.53) 

0

, , , , , , , , , ,( ) 0i j c t w ij i c t w j c t wf                                                                                            (4.54) 

, , , , , , , , , , , ( )

1

, ( ),

1

( ) (1 [ ( ), ( )]

[ ( ), ( 1)]) , ,

D

i j c t w ij i c t w j c t w j d t

d

W D

j d t w

w d D

f M X d t d T

X d t d t w d t

  


 

   

  




                    (4.55)   

0 0

, , , , , ,maxi j c t w i jf f                                                                                                                               (4.56) 

 

 

 

, , , , , ,max , ( )

1

, ( ),

1

( [ ( ), ( )]

[ ( ), ( 1)]) , ,

D

i j c t w i j j d t

d

W D

j d t w

w d D

f f X d t d T

X d t d t w d t



 



  




                                                      (4.57)      

 

, ( ) , ( 1) , ( ) , ( )

f f add ret

k d t k d t k d t k d tCap Cap Cap Cap                                                          (4.58) 



www.manaraa.com

76 
 

  

, ( ), , ( ) , ( ),

f

k d t w k d t k d t wCap Cap Cap                                                                                (4.59)  

, ( ) 0f

k d tCap                                                                                                                                       (4.60) 

, ( ) 0add

k d tCap                                                                                                                                       (4.61) 

, ( ) {0,1}j d tX                                                                                                                                    (4.62) 

, ( ), {0,1}j d t wX                                                                                                                              (4.63)   

, , , , ( ),0 *k t c w k d t wP CF Cap                                                                                              (4.64) 

This constraints ensures that no candidate is invested twice in the core-trajectory solution. 

, ( )

1

1
D

j d t

d

X j


                                                                                                                           (4.65) 

This constraints ensures that at a particular stage if a transmission is invested in the core-

trajectory, it is not available to be adapted to scenarios. 

, (1) , ( ) , ( ),

2 1

, 2
D D W

j d j d t j d t w

d d D w

X X X j D
  

                                                   (4.66)   

In the objective function of the co-optimization formulation (i.e. 4.52), the first term is 

the core trajectory for transmission investment and it is updated throughout the planning horizon. 

The second term in the objective function is the additional investment that updates the core 

trajectory for generation investment and the salvage value is subtracted from the investment cost. 

The third second term is the fixed O&M costs for all generators. The fourth term in the objective 

function is the sum of variable O&M costs and the fuel costs for generators. The fifth term in the 

objective is additional transmission investment needed to adapt to future scenarios at each time 

stage. The sixth term in the objective is additional generation investment needed to adapt to 

future scenarios at each time stage. The discount factor is applied to all costs. 
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Equation 4.53 represents the power demand balance equation for all given operating 

conditions in a year, during the planning period over all scenarios in the problem. Equation 4.54    

represents line flow constraints for existing lines for all given operating conditions in a year, all 

the years in the planning period and all scenarios in the model. 

        Equation 4.55 represents the line-flow constraint for candidate lines and M is a large 

number, after the inequality sign, the first term before the negative sign is core trajectory for 

transmission candidates while the second term is the transmission needed to adapt to future 

scenarios. Equation 4.56 is the maximum allowable power flow for existing lines. Equation 4.57 

is the maximum allowable power flow for candidate lines. Equation 4.58 is the core-trajectory 

update equation for generation investment. Equation 4.59 represents adaptation from the core-

trajectory to different scenarios. Equation 4.60 and 4.61 signifies that the decision variables 

involved  must be non-negative. Equation 4.64 is the allowable power a generator is allowed to 

dispatch in an operating condition.  

4.2 Procedure 

There are several steps involved in planning using adaptation. The  5 steps involved in 

transmission planning are listed below: 

1) Selection of transmission candidates 

2) Scenario generation 

3) Scenario reduction 

4) Design of transmission using adaptation  

5) Validation of design 

 



www.manaraa.com

78 
 

  

4.2.1 Selection of transmission candidates 

The first step in the procedure is selection of transmission candidate lines. Transmission 

line are selected to ensure that the planning problem is feasible for the planning horizon. 

4.2.2 Scenario generation 

After several global uncertainties have been identified, then each global uncertainty is 

therefore assigned with a number of realizations, for example natural gas can be a global 

uncertainty with realization of high medium and low natural gas price trajectory. This research 

does not model local uncertainties. 

4.2.3 Scenario reduction 

After generating multiple scenarios the next step performed is scenario reduction. 

Scenario reduction can help reduce the computation complexity of a problem. By reducing the 

number of scenarios by clustering similar scenarios together, the number of variables and 

constraints are directly reduced, therefore making the problem computationally tractable.  

Techniques such as SP uses approaches such as simultaneous backward reduction, fast forward 

selection and scenario tree construction [52]. An approach is developed for scenario reduction in 

this dissertation. This approach computes the optimal investment for all considered scenarios and 

then tries to find similarities between the optimal solutions and then clusters the scenarios based 

on this similarity. 
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Figure 13: Figure for scenario reduction approach 

TISI (Transmission Investment Similarity Index) 

The similarity index is used to measure how similar optimal plans for each scenario are. 

We use the phi-co-efficient correlation index. The range for this index is [-1,1]. The phi-

coefficient correlation index is described in [53]. We describe its use in this dissertation as 

follows. 

When solving the optimal deterministic solution for each scenario, a vector for each 

scenario’s solution is constructed indicating the transmission investments identified in that 

solution. (We delete any variables corresponding to transmission candidates that were never 

invested in any scenario. This provides that the vector of all scenario solutions is of minimal 

dimension and also so that the similarity index is reflects only essential information. 
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There are four possible combinations when comparing each element in two vectors. The 

variables M1, M2, M3, and M4 are the number of elements in both vector that correspond to the 

combinations described in the Table 4 below. 

Table 4: Relationship between variables 

 Variable 1 Variable 2 

M1 0 0 

M2 0 1 

M3 1 0 

M4 1 1 

 

1 4 2 3

4 3 4 2 3 1 1 2

* *

( )( )( )( )
index

M M M M
Phi

M M M M M M M M




   
      (4.50)                                           

 

     GISI (Generation Investment Similarity Index) 

This index measures the similarity between the generation investments of two scenarios. 

The closer the value to one the stronger the similarities between scenarios. After the optimal co-

optimized solution is solved for all scenarios, the generation investment solution is separated for 

all scenarios and stored in a vector, the GISI computes the similarity between the vectors using 

their distance information. 
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where, 

di,j  is the distance between vector i and j 

N is the number of elements in the vector  
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vi,n is the nth element of vector i 

vi,j  is the nth element of vector j 

 

Hierarchical clustering 

Hierarchical clustering analysis (HCA) is an approach in data mining[54]. The 

information in which HCA is presented is known as a dendrogram. The dendrogram displays a 

hierarchical relationship between data. The information is presented as  bottom-up or top down 

clusters that have sub-clusters and the sub-clusters also have sub-clusters and keeps going in that 

fashion. The HCA clusters based on the distance or similarity between data. The similarity 

matrix for both transmission and generation investment is a symmetric matrix and it is clustered 

using HCA approach. The horizontal -axis of the dendrogram represents number of individual 

observations while the vertical-axis represents the similarity/distance information. In our analysis 

the horizontal-axis represent scenarios. 

 

Figure 14: Dendrogram 
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4.2.4 Optimization of investment using adaptation  

After scenario reduction, scenarios have been grouped into clusters. A representative 

scenario is selected from each cluster and explicitly modeled as a future in the adaptation 

formulation. 

4.2.5 Validation 

The main objective of the adaptation is to design a system that has good performance 

among a wide range of futures. In the validation phase, the adaptive design is compared to 

different deterministic designs. The deterministic designs selected are the optimal solution to 

representative scenario selected from each cluster. The idea of validation is to show there is 

benefit in considering uncertainty and that a design using adaptation is consistent in its 

performance across a wide range of scenarios. 

 

4.3 Software Design Process 

        The data for the planning problem is stored in excel. A developed Matlab code reads the 

planning data as an input, after the planning data is read, another Matlab code generates the 

matrix required for optimization problem. The code is then run through the ECPE server at ISU. 

 

Input data  

-Fuel cost 

-Demand 

-Decision stages 

-Generator data 

-Scenarios 
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-Existing transmission lines 

-Candidate transmission lines 

“Xlsread” is the code used to read date from excel into Matlab. Aineq is the linear inequality 

constraints in a Matrix, while Aeq is equality constraints in a Matrix.The other vectors generated 

are 

 f=vector for objective values 

lb = the lower bound vector for variables 

ub = the upper bound vector for variables 

The server in Fig.15 below has 94 GB in memory and 24 CPU’s. 

 

Figure 15: Software design process  
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CHAPTER 5. APPLICATION TO IEEE 24 BUS SYSTEM 

5.1 Introduction 

In this section adaptation is applied to transmission and co-optimization expansion 

planning and IEEE 24 Bus system is used for this case-study. In this co-optimization 

formulation, the transmission candidates decision variables are integer while the generation 

decision variables are continuous variables 

5.2 Case-study 

A Planning problem is for formulated and solved using the adaptation. The planning 

horizon is 20 years. In each year, 5 operating conditions are considered. A modified version of 

the IEEE 24 bus system is used for this case-study. Decisions are made before the 1st year, the 

5th, 10th and 15th year. The first case-study is solely for transmission expansion and the second 

case-study illustrates co-optimization of both transmission and generation investment. There 

were 18 scenarios considered. 

  

Table 5: Operating conditions 

Operating condition Load ratio Hours  

1 0.5115 438 

2 0.6338 1751 

3 0.6779 4381 

4 0.824 2015 

5 1 175 

 

We consider three global uncertainties. These uncertainties, and the values they may take, are: 

 

1) Natural gas price growth uncertainty 

                        -High price: 3% per year 
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                        -Medium price: 2% per year 

                        -Low price: 1% per year 

2) Demand growth uncertainty 

                        -High demand growth: 2.2% per year 

                        -Medium demand growth, 1.5% per year 

                        -Low demand growth, 1% per year 

3) Carbon tax uncertainty 

                        -Yes, $20/Mwh 

                        -No 

 
 

IEEE 24 BUS 

The IEEE 24 Bus-system is used in this case-study. This system consists of 38 lines. The number 

of candidate circuits is also 38 lines. Figure 16 illustrates this system. Data for this system is 

provided in Appendix A. Table 6 identifies the 18 scenarios that are possible based on the 

attributes that each global uncertainty can take. 
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                                                     Figure 16: IEEE 24 Bus system 
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Table 6: Global scenarios 

Scenarios  Natural gas price  Demand  Carbon tax  

1 Low  Low  No  

2 Low  Low Yes 

3 Medium  Low No 

4 Medium  Low Yes 

5 High  Low No 

6 High  Low Yes 

7 Low Medium No 

8 Low Medium Yes 

9 Medium Medium No 

10 Medium Medium Yes 

11 High Medium No 

12 High Medium Yes 

13 Low High No 

14 Low High Yes 

15 Medium High No 

16 Medium High Yes 

17 High High No 

18 High High Yes 

 

5.3.1 Scenario reduction for transmission planning 

The scenario reduction technique is performed using hierarchical clustering technique using a 

dendrogram. The optimal solution is solved for each of the 18 different scenarios. A symmetric 

similarity matrix based on the phi-correlation co-efficient is computed. The hierarchical 

clustering technique is then used cluster the scenarios based on similarities with other scenarios.  
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Table 7: Optimal solutions for all 18 scenarios 

                                                    Scenarios 

From To MW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 2 175 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

1 3 175 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 

2 6 175 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

3 9 175 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 

3 24 400 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

6 10 175 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 

7 8 175 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

8 9 175 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 

8 10 175 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 

10 12 400 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 

14 16 500 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

15 16 500 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 

15 21 500 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1 0 

15 21 500 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 

15 24 500 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 

16 17 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

16 19 500 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 18 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

21 22 500 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

 

The table 7 above shows all the lines that were built in each scenario regardless of the time they 

were built. 
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                               Figure 17: Clustering scenarios using a dendrogram 

In the dendrogram of Figure 17, the y-axis depicts the strength of the clusters and the x-

axis represents the scenarios involved, the lower the value of the y-axis, the stronger the clusters. 

The scenarios were clustered into six groups. 

Cluster 1 {2, 4, 10, 12} 

Cluster 2 {14, 16} 

Cluster 3 {1, 7} 

Cluster 4 {6, 8, 18} 

Cluster 5 {3, 5, 9, 11, 13} 

Cluster 6 {17, 15} 

From cluster 1, scenario 2 and 4 have exactly the same solution, while scenario 10 and 12 

built an extra line in additional to all the lines built in scenario 2 and 4(see  Table 7). From the 

cluster 2, scenario 14 and 16 built the same lines. From cluster 3 Scenario 1 and 7 built the same 
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lines aside from an additional one built by scenario 7. From cluster 4, all the lines built in 

scenario 6 and 8 except one built in scenario 6 are subsets of all the lines built in scenario 18. In 

the scenario clustering it can be seen that scenarios with carbon tax were never clustered with 

scenarios without carbon tax.  

        A selected scenario that well represents the cluster is selected and modelled explicitly in the 

mathematical model of adaptation. In this dissertation, there is no definite way for determining 

the number of clusters, however there is an approach which is used to determine whether a 

cluster is cluster-worthy and this is based on the following qualiliative assessment below. 

    -1.0 to -0.7 strong negative association. 

    -0.7 to -0.3 moderate negative association. 

    -0.3 to +0.3 little or no association. 

    +0.3 to +0.7 moderate positive association. 

    +0.7 to +1.0 strong positive association. 

These ranges are very common in the statistical community. The minimum acceptable was the 

moderate positive association. Every cluster has a similarity matrix and the pair-wise correlation 

between two scenarios had to be either in the moderate positive association or strong positive 

association. 

5.3.2 Results/Case-study 

In the adaptation formulation, 6 representative of the selected scenarios from the pool of 

18 scenarios are explicitly modelled in the formulation. However, in the validation process all 

the 18 scenarios are used.  A design of β value of 0.25 is compared with optimal solution with 6 

representative scenarios. There are 38 transmission candidates and this translates the problem to 

836 binary variables.  
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Table 8 summarizes transmission investments made for the adaptation-based design with 

β=0.25. If a candidate was not invested, then it is not shown in Table 8. Thus, the left-hand 

column of Table 8 groups invested candidates and their capacity. Table 8 indicates that all 

transmission investments were made at the initial investment period (T=0), and none were made 

thereafter. This suggests that transmission of this system is initially insufficient to serve its load 

from the generation resources that it has. To check this, line flows were inspected for the initial 

peak load conditions, and it was found that all of the transmission candidates listed in Table 8 

were at their limits.    

Table 8: Core-trajectory for transmission investment (β=0.25) 

Transmission  

Candidate 

(Bus i to 

Bus k) 

Capacity T=0 T=5 T=10 T=15 

3 - 24 400MW 1 0 0 0 

7 - 8 175MW 1 0 0 0 

8 - 10 175MW 1 0 0 0 

16 – 17  500MW 1 0 0 0 

17 – 18  500MW 1 0 0 0 

 

We validate these results using two different approaches. In both approaches, six 

deterministic designs (the optimal solutions for the six representative scenarios) are compared 

with an adaptive design obtained based on a value of β=0.25.  The two validation approaches are 

described in what follows: 

Validation approach 1: In this validation approach, the initial investment plan of the six 

deterministic designs and the one adaptive design are forced to adapt to each of the 18 original 

scenarios. This approach was deployed because it is typical in the SP literature to validate in this 

fashion. 
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Validation approach 2: In this validation approach, the entire investment trajectory of the six 

deterministic designs and the one adaptive design are forced to adapt to each of the 18 original 

scenarios. This approach was deployed because each of the solutions obtained (i.e., the six 

deterministic designs and the one adaptive design) actually specific trajectories through the entire 

planning horizon, and therefore testing of the various solutions necessarily means testing of the 

entire investment trajectory. 

The results of validation approach 1 are described in this subsection. The results of validation 

approach 2 are described in the next subsection. 

Figure 18 below provides the average total costs across all scenarios for the adaptation-based 

design (β=0.25) and different deterministic designs. Here, “total costs” refers to the sum of total 

investments (both the original investments as well as the investments necessary to adapt to each 

scenario) and the total operating costs over the planning horizon. It can be seen from Fig 18 

below that the adaptation based design is on average $3.2 million lower than the best 

deterministic design. 
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Figure 18: The average total costs across all scenarios for different deterministic and β 

designs 

 

 

Figure 19: Sum of squares regret across all scenarios for different deterministic and β 

designs 
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To illustrate the robustness of each design, we show regret in Fig. 19 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

 Each of the differences are divided by a million. It can be seen in the Figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design.   

 

 

Figure 20: Comparison of the adaptation based design with the two deterministic designs in 

terms of total costs 

It can be seen in the dendrogram in Fig.18 (and also in Table 6) that that scenarios with 

carbon tax were never clustered with scenarios without carbon tax. The two best deterministic 

designs are selected in terms of average total costs from scenarios with carbon tax and scenarios 

without; these are opt#4 and opt#7, as observed in Figure 18. These two designs, and the 

adaptation-based design, are then exposed to the 18 scenarios, and the adaptation costs are 
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computed for each. Results are illustrated in Figure 20, where it is observed that the adaptation 

based design (is the blue bars) is never the highest in any of these scenarios. This shows 

consistency. It can also been seen in Figure 20 above that opt#4 performed well in scenarios with 

even numbers(i.e scenarios with carbon tax) and opt#7 performed well in scenarios with odd 

numbers (i.e scenarios without carbon tax). The value for opt#4 is zero for scenario 2 because 

from table 7 they built the same lines and in scenario 10 because they built same lines except 

from scenario 10 built an extra line, however if you expose scenario 4 solution to scenario 10 it 

builds that extra line. 

  

Figure 21: Average adaptation costs and total costs for different deterministic and β 

designs 

The horizontal grey line in Fig. 21 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. One idea of flexibility is 
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to balance the total costs and adaptation costs. It can be seen in Fig. 21 above that although 

opt#3, opt#14 and opt#15 have lower adaptation costs they have very high total costs. Lower 

adaptation costs is a sign of a flexible plan, but it should be balanced with having a relatively low 

total costs.   

Even though low β designs tends to have high adaptation costs, they tend to do well for 

decision-makers  embracing “wait and see” philosophies, because they commit few resources 

initially but provide opportunity to adapt later, after the future scenarios have been revealed. The 

concept of “wait and see” differ in SP and adaptation. The difference here is that the “wait and 

see” option for SP is indeed a real “wait and see” option. In contrast, the “wait and see” option 

for adaptation is actually just the second of two decisions. The first decision is “what is the core 

investment?” and the second decisions is “what is the adaptation investment?”. Selection of β is 

very influential in getting a good design. If β is not well chosen the design may be undesirable. 

5.3.3 Validation using core trajectory 

In this validation approach, the core-trajectory is used unlike in validation approach 1 

where only the initial solution of the trajectory is used. This validation approach seeks to check 

the long-term adaptability of the core-trajectory. The six deterministic designs and the adaptive 

designs are forced to adapt to each of the 18 original scenarios. The total costs (i.e., investment 

costs + operations costs+re-investment costs) is computed as:     

TC = CostO&M   +   CostCoreInvestment  + CostRe-investment                                                 (5.1)                

  

It can be seen in Fig. 22 below that the adaptation based design is lower than the deterministic 

design in terms of total costs.        
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Figure 22: Average Total costs across all scenarios for different deterministic and β designs 
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Figure 23: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 23 below. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

   Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design.   
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Figure 24: Average adaptation costs and total costs for different deterministic and β 

designs 

 The horizontal grey line in Fig. 24 above that passes through the bars represents a 

change in range, because adaptation and total costs are different in magnitude. It can be seen that 

in Fig. 24 above that Opt#15 has the lowest adaptation cost but a very high total costs. β has to 

be well selected in order to avoid designing a robust design, robust designs tend to have low 

adaptation costs but very high total costs.  
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5.4 Co-optimization Under Uncertainty Using Adaptation 

In this section adaptation is applied to transmission and generation expansion planning 

using the IEEE 24 bus system. In this formulation the transmission candidates are model as 

integer while the generation decision variables are continuous.  

A planning problem is for formulated and solved using adaptation. The planning horizon 

is 20 years. In each year, 5 operating conditions are considered (see Table 5). A modified version 

of the IEEE 24 bus system is used for this case-study. Decision are made before the 1st year, the 

5th, 10th and the 15th years both for generation and transmission decisions. The base load used 

was 4000MW. 

Global uncertainties, the attributes they can take, and the possible scenarios are the same 

as given for the adaptation done for a transmission expansion planning problem, and are given in 

Section 5.2  

5.4.1 Scenario clustering for co-optimization 

Scenario clustering for co-optimization is quite challenging because two decision 

variables are involved. An optimal solution for a scenario may have similar transmission 

investment solution but very different generation investment solution. An index is proposed that 

combines both similarity indices for both generation and transmission investment.  

 

Generation and transmission investment similarity index 

           The generation investment similarity index (GISI) and the transmission investment 

similarity index (TISI) measure the similarity between the generation investments and 

transmission investments, respectively, of two scenarios. The closer the generation (for GISI) 
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and the closer the transmission (for TISI) values from two investment solutions are to one 

another, the stronger the similarities between the two investment solutions. After the optimal co-

optimized solution is solved for all scenarios, the generation and transmission investment 

solutions for all scenarios are stored in a vector and their similarity index is computed 

 

Figure 25: Scenario clustering approach for co-optimization 

 

The combined index is the sum of squares of both G+T similarity index, since the transmission 

index(TISI) ranges from -1 to 1, the index is normalized to go from 0 to 1. 
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Table 9: Optimal solutions for all 18 scenarios (Transmission) 

                                           Scenarios 

From To MW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 2 175 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 3 175 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 

1 5 175 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 

3 9 175 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 

3 24 400 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 

5 10 175 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1 

7 8 175 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

8 9 175 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 

8 10 175 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 

15 16 500 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

16 17 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

16 19 500 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

17 18 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

21 22 500 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

 

The table above shows all the lines that were built in each scenario regardless of the time they 

were built. 

Table 10: Optimal solutions for scenarios 1-9 (Generation) 

                                                  Scenarios 

Bus Gen 

Type  

1 

MW 

2 

MW 

3 

MW 

4 

MW 

5 

MW 

6 

MW 

7 

MW 

8 

MW 

9 

MW 

1 Nuc 382.8 324.5 396.29 597.9 554.05 687.4 380.8 340.3 384.5 

2 NG 0 0 0 0 0 0 0 0 0 

7 Coal 0 0 0 0 0 0 0 0 0 

13 NG 0 0 0 0 0 0 0 0 0 

14 Wind 0 0 0 0 0 0 0 0 0 

15 NG 866.5 1104.3 656.36 0 432.98 0 929.5 1048.2 1324.5 

16 NG 0 0 0 0 0 0 0 0 0 

18 Nuc 0 0 0 442.7 0 442.5 0 0 0 

21 Coal 0 0 0 0 0 0 0 0 0 

22 Nuc 70.9 102.7 217.83 373.1 404.17 380.1 180.7 223.4 177 

23 Coal 0 0 0 0 0 0 0 0 0 

The table above shows all the cumulative capacity built at each bus 
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                           Table 11: Optimal solutions for scenarios 10-18 (Generation) 

                                                   Scenarios 

Bus Gen 

Type  

10 

MW 

11 

MW 

12 

MW 

13 

MW 

14 

MW 

15 

MW 

16 

MW 

17 

MW 

18 

MW 

1 Nuc 620.8 588.9 674.3 643.6881 609.9309 629.8669 737.1 722.9 697.8 

2 NG 0 0 0 0 0 0 0 0 0 

7 Coal 0 0 0 0 0 0 0 0 0 

13 NG 0 0 0 0 0 0 0 0 0 

14 Wind 0 0 0 62.2091 82.6425 36.5837 24.7 21.5 0 

15 NG 0 754.5 0 580.6342 555.5943 583.241 0 766.7 0 

16 NG 0 0 0 0 0 0 0 0 0 

18 Nuc 521.6 20.8 70.3 187.5304 259.6476 231.9153 562.8 129.2 175.9 

21 Coal 0 0 0 0 0 0 0 0 0 

22 Nuc 365.6 444.4 922 424.1999 371.2303 419.0348 369.4 431.3 928.4 

23 Coal 0 0 0 0 0 0 0 0 0 

 

 

 

Figure 26: Dendrogram for scenario clustering for co-optimization 
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In the dendrogram in Figure 26, the y-axis depicts the strength of the clusters and the x-

axis represents the scenarios involved, the lower the value of the y-axis, the stronger the clusters. 

The scenarios were clustered into seven groups. 

Cluster 1 {1,3,7}  

Cluster 2 {2,8}     

Cluster 3 {11,17}  

Cluster 4 {5,13,14,15}  

Cluster 5 {4,6,10,16} 

Cluster 6 {12,18}  

Cluster 7 {9} 

 

In cluster 1, for the transmission solution, scenario 1, 3 and 7 all built the same lines (see 

Table 9). In cluster 2, for the transmission solution, scenario 2 and 8 all built the same lines. In 

cluster 3, for the transmission solution, scenario 11 and 17 all built the same lines except that 

scenario 11 built line (16-19) and scenario 17 built line (7-8). In cluster 6, for the transmission 

solution, scenario 12 and 18 built the same lines except that scenario 18 built an extra line (15-

16).  

In cluster 1, for the generation solution, scenarios 1, 3 and 7 all built generation at the 

same location. The capacity of nuclear generation built at bus 1 is very similar (see Table 10). 

     In cluster 6, for the generation solution, scenarios 12 and 18 built generation at the same 

location. The capacity of nuclear generation built at bus 1 and bus 22 for both scenarios are very 

similar in terms of capacity (see Table 11). 
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 A selected scenario that well represents the cluster is selected and modelled explicitly in 

the mathematical model of adaptation. 

  

5.4.2 Results/Validation 

In this case-study, scenario reduction resulted in 7 clusters. Of these, 1 contained only 

one scenario sometimes called an outlier.   Clusters with just one scenario are excluded from 

further consideration because they will have less significant impact and because their inclusion 

significantly increases the computational requirements of the problem. For the each of the 

remaining clusters, one representative scenario was selected, so that the problem has 836 binary 

decision variables. The first problem solved is solely for transmission expansion, and the second 

problem solved is for co-optimization of both transmission and generation investment. There are 

11 buses where new generation can be investment. The base load is 4000MW. 

The table 12 is the core-trajectory investment for generation investment while Table 13 is the 

core-trajectory investment for transmission investment. 

Table 12: Core-trajectory for generation investment (βT=0.25,  βG=1) 

Bus number Generator 

type 

T=0 T=5 T=10 T=15 

1 Nuclear 435.4MW 0 MW 0 MW 0 MW 

2 NG 0 MW 0 MW 0 MW 0 MW 

7 Coal 0 MW 0 MW 0 MW 0 MW 

13 NG 0 MW 0 MW 0 MW 0 MW 

14 NG 0 MW 0 MW 0 MW 0 MW 

15 Wind 824.2 MW 0 MW 0 MW 0 MW 

16 NG 0 MW 0 MW 0 MW 0 MW 

18 Nuclear 0 MW 0 MW 16MW 0 MW 

21 Coal 0 MW 0 MW 0 MW 0 MW 

22 Nuclear 62.9MW 69.7 MW 262.8MW 0 MW 

23 NG 0 MW 0 MW 0 MW 0 MW 
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Table 13: Core-trajectory for transmission investment (βT=0.25,  βG=1) 

Transmission  

Candidate  

Capacity  T=0 T=5 T=10 T=15 

1-2  175MW 1 0 0 0 

1-5  175 MW 1 0 0 0 

16-17 500 MW 1 0 0 0 

17-18 500 MW 1 0 0 0 

 

The new investment in nuclear generation at bus 1 triggers the investment of two 

candidate lines (i.e., 1-2, 1-5). Table 13 does not show all candidates lines but shows only 

candidates lines that were chosen in the planning horizon. 

The adaptation was run again with a lower value of βG; it was decreased from βG=1 to 

βG=0.5. Results for the lower value of βG are provided in Table 14 and Table 15. Comparison 

between the results in Table 12-Table 13 and Table 14-Table 15 indicate that the core-trajectory 

with a lower β for generation investments builds less generation and transmission capacity. This 

is intuitively satisfying because (a) lowering βG, for generation, encourages higher adaptation 

costs and therefore lower core investment costs. The lower investment costs for generation drives 

less investment cost for transmission. 

Table 14: Core-trajectory for generation investment (βT=0.25,  βG=0.5) 

Bus number Generator 

type 

T=0 T=5 T=10 T=15 

1 Nuclear 325.5 MW 0 MW 0 MW 0 MW 

2 NG 0 MW 0 MW 0 MW 0 MW 

7 Coal 0 MW 0 MW 0 MW 0 MW 

13 NG 0 MW 0 MW 0 MW 0 MW 

14 NG 0 MW 0 MW 0 MW 0 MW 

15 Wind 859.8 MW 0 MW 0 MW 0 MW 

16 NG 0 MW 0 MW 0 MW 0 MW 

18 Nuclear 0 MW 0 MW 0 MW 0 MW 

21 Coal 0 MW 0 MW 0 MW 0 MW 

22 Nuclear 0 MW 0 MW 0 MW 0 MW 

23 NG 0 MW 0 MW 0 MW 0 MW 



www.manaraa.com

107 
 

  

 

Table 15: Core-trajectory for transmission investment (βT=0.25,  βG=0.5 ) 

Transmission  

Candidate 

Capacity T=0 T=5 T=10 T=15 

1-2 175MW 1 0 0 0 

16-17 500 MW 1 0 0 0 

17-18 500 MW 1 0 0 0 

 

We validate these results using two different approaches. In both approaches, seven deterministic 

designs (the optimal solutions for the seven representative scenarios) are compared with an 

adaptive design obtained based on a values of (βT=0.25 and βG=0.5) and (βT=0.25 and βG=1).  

The two validation approaches are described in section 5.3.2 

It can be seen in the Fig. 27 below that both of the adaptation based designs have the lowest 

costs. 

 

Figure 27: Average total costs across all scenarios for different deterministic and β designs 
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Figure 28: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 28 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

       Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 
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Figure 29: Average adaptation costs for all scenarios for different deterministic and β 

designs 

The horizontal grey line in Fig. 29 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. It can be seen in Fig.30 

above that the Opt#12 has the lowest adaptation cost but has the highest total costs. β has to be 

well selected in order to avoid designing a robust design, robust designs tend to have low 

adaptation costs but very high total costs. 

5.4.3 Validation using core trajectory 

In validation we try to capture the value of including uncertainty. In order to validate our 

design. Deterministic design are compared with adaptive designs with different β. Seven 

deterministic design which are the optimal solutions for the seven representative scenarios.  The 
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seven deterministic designs and the adaptive designs are forced to adapt to 18 original scenarios. 

The total costs (i.e. investment costs + operations costs+re-investment costs) is computed. One 

of the characteristics of a flexible design is that it is consistent in performance across a wide 

range of scenarios. In this validation the core-trajectory is used unlike in the previous validation 

where only the initial solution of the trajectory is used. This type of validation seeks to check the 

long-term adaptability of the core-trajectory. 

TC = CostO&M   +   CostCoreInvestment  + CostRe-investment                                                                                  (5.2)                                                                                                           

 

Figure 30: Average total costs across all scenarios for all scenarios for different 

deterministic and β designs 

It can be seen in Fig. 30 above that the first adaptive design has the lowest total cost and the 

second adaptive design performs even worse than some deterministic designs, this has to do with 

selection of β. β has to be well selected in order to avoid designing a robust design, robust 
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designs tend to have low adaptation costs but very high total costs. The second design is more of 

a robust design than flexible design. 

 

Figure 31: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 31 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

        Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 
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Figure 32: Average adaptation costs and total costs for different deterministic and β 

designs 

The horizontal grey line in Fig. 32 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. It can be seen in Fig. 32 

above that Opt#12 has the lowest adaptation cost but has the highest total costs. β has to be well 

selected in order to avoid designing a robust design, robust designs tend to have low adaptation 

costs but very high total costs. 
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CHAPTER 6. APPLICATION TO R2B DESIGN  

This chapter applies adaptation to the design  of “R2B” transmission under uncertainty. 

This chapter also describes the computational challenges faced and describes  methods used to 

reduce the challenge. The first task done in this chapter is to design a backbone transmission to 

accommodate most of this new wind farms. James Slegers designed “R2B” under deterministic 

assumptions [55]. This dissertation extends the work and design “R2B” accounting for the issue 

of flexibility. After the initial design of “R2B” the future may warrant that that more wind farm 

is connected to the grid and the existing “R2B” transmission may need upgrades.  

6.1 Characteristics Of A Good “R2B” Design 

There are several good attributes of a R2B transmission. The electric power system 

planner will have to trade-off between these attributes.    

Circuit miles 

Many electric power utilities own thousands of circuit miles of transmission lines at 

different voltage levels. Transmission investment cost are a function of circuit miles (i.e. the 

longer the line, the more expensive the line is), also transmission lines with shorter circuit miles 

are easy to maintain than ones with longer circuit miles. In terms of reactive power, the longer 

the transmission the higher the possibility of insufficient reactive support for the transmission 

line.  Therefore, it is necessary to minimize the number of circuit miles when considering 

transmission expansion. 

Right –of –Way 

The right-of-way of an electric transmission line is a lengthy limited region of land where 

construction, operation, maintenance and repair of transmission line equipment occurs. Securing 

right-of-way for transmission expansion is not an easy task. It is necessary to minimize the right-
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of-way of transmission lines due to the high costs associated with obtaining new right-of-way 

and also it will help minimize environmental impact introduced by power lines. 

Visual Impact 

Visual impact introduced by transmission lines is a very issues or concern for 

environmentalist and concerned citizens who appreciate scenic beauty. Transmission lines and 

other similar developments can adjust the aesthetics of nature. Therefore when planning 

transmission expansion, it is necessary to minimize visual impact introduced by transmission 

lines as much as possible. Placing transmission lines underground will solve the problem of 

visual impact; However, underground transmission is very expensive and could be as much as 

four times more expensive than overhead transmission lines. It is necessary to minimize the 

impact transmission lines towers and lines seen from residences, farms, roads, and recreational 

parks.  

Reliability 

Reliability has to do with the consistency of the quality of measurement. In electric 

power systems, reliability is the measure of the ability of a power system to adequately supply its 

electric energy demands. The reliability and availability of transmission must be very high. 

Reliability in electric system planning is one of the key factors that determine which expansion 

plans are to be invested. When choosing between transmission expansions alternatives, it is 

expedient to maximize reliability. Multiple paths increase system reliability because the failure 

of one line does not cause a system catastrophe. 

Economics 

       Investment in transmission is a very delicate issue because investment is irreversible and 

transmission investment has a high sunk cost. Transmission investment cost consist of right-of-
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way costs, cost of material (i.e. conductor), cost of towers and poles, cost of labor. The cost of 

maintenance could also be quite expensive. The cost of transmission line is a function of how 

long in miles the line is and the MW capacity of the line. When comparing various transmission 

expansion alternatives, cost is a major factor. Transmission lines are very expensive and the cost 

vary according to the voltage level, MW capacity and length of line. 

6.2 Uncertainty Modelling In “R2B” Design 

When there are many possible future outcomes, uncertainty modelling is required in order to 

manage risk. The more uncertain an environment is, the more difficult it is to plan in the 

environment. Uncertainty has been a concern for decision makers and planners, especially when 

decisions made are irreversible. The following uncertainties are considered 

a) Capacity Growth 

b) Location of new capacity 

6.3 Iowa Power System 

The Iowa power system is used for this case-study. The Iowa power system consists of 

338 existing lines ranging from 69 kV to 345 kV, 203 buses excluding neighboring states.  

Neighboring states such as Illinois, Minnesota, Missouri, Nebraska and Wisconsin are also 

modelled. James Slegers a former master’s student considered eight possible future wind 

resource areas considered in Iowa. The number of wind farms in each wind resource area varied 

from 6 wind farms to 18 wind farms. The figure below depicts how the wind-farms were 

clustered based on geographic locations; these locations were identified based on a systematic 

analysis that accounted for locational attributes including wind resource, proximity to existing 

transmission, and land unavailability (due to existing wind farms, national parks, municipalities). 
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The green boxes represent new wind-farms to be connected, while the red boxes represent 

possible substations to which the new wind farms can be connected. 

 

 

Figure 33: Location of wind-farms clusters on the map of Iowa 

Table 16: Wind cluster and total capacity 

Groups  Wind Farms  Capacity in MW 

A 15 2963 

B 11 2128 

C 13 2572 

D 9 1778 

E 11 2163 

F 5 982 

G 6 1184 

H 6  1185 

 
 

6.4 Design Of A Backbone 

Wind power is growing at a very fast rate. The need to connect multiple wind-farms to 

the main grid will be necessary. Wind resource rich areas tends to have low load ,hence high 

capacity backbone is needed to transfer most of this wind resources to high load areas. A 
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backbone is designed for the state of Iowa. The optimization problem is formulated as a single 

period problem considering five operating conditions (i.e. combination of load and wind), the 

operating conditions can be seen in the Table 17 below. Each cluster of wind-farm is modelled as 

a large wind generator. Ninety-nine transmission candidates are considered and the St Claire 

curve in Fig. 35 is used to find the Surge impedance loading of transmission line candidates. 

 

Table 17: Operating conditions 

Operating condition Load ratio Hours  Wind output  

1 0.5115 438 0.8202 

2 0.6338 1751 0.6833 

3 0.6779 4381 0.345 

4 0.824 2015 0.1592 

5 1 175 0.087 

 
 

 

Figure 34: St-Claire curve [56] 

The black lines in Fig. 36 below represent 765 kV lines. 
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Figure 35: Backbone design for the state of Iowa 

 

6.5          Case-Study/R2B Transmission 

Possible future wind resource areas in Iowa were divided into 8 clusters in figure 33. The 

number of wind farms in a cluster varies from 6 wind farms to 18 wind farms. In this case-study, 

six of the clusters are used in this chapter. These designs are N-1 secure and all connected. The 

uncertainty addressed in this study is based on location and wind capacity growth uncertainty. 

We select different values of β to get different designs of R2B transmission, after selecting 

different values of β, we go through a validation process. Validation is performed for all six 

clusters. The planning is 10years and decisions are made at t=0 and t=5. 

   Selection transmission candidates for windfarms 

In selection of transmission candidates, substations that have a lot of available transfer 

capability (ATC) had more transmission line candidates from wind farms connected to them. 

Wind farms that were considered very far from possible available substation based on longitude 

and latitude data were not given priority as transmission line candidate selection. The cost of 
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transmission candidates is estimated based on the capacity and length of the line. Wind Clusters 

with more wind-farms had more transmission candidates. 

 

Scenario generation 

In scenario generation, we considered two kinds of uncertainty which are location and 

capacity uncertainty. Wind clusters with few wind farms we divided based on an individual wind 

farms, however wind clusters with a lot of wind farms were classified based on group of wind 

farms. For examples a wind cluster with 13 wind farms might be divided into 4 groups based on 

their proximity to each other. In the next stage of wind farm expansion, the location can either 

increase in wind capacity or remain constant. For example if a particular wind cluster is divided 

into 4 groups, in the next stage there will be a maximum of 16 scenarios (i.e. 24). 

Contingency modelling 

Contingency is modelled using the approach in this paper [44].  In this formulation the 

number of constraints and continuous variables is directly proportional to the number of 

contingencies considered, while the number of binary variables stays the same regardless of the 

number of constraints considered. 

                           

6.5.1 Results        

Case-study #1 for windfarm group #1 

The figure for wind cluster #1 can be located on the Iowa map in section 6.3 

 

Table 18: Stage 1 wind-farm capacities 

WF/MW 1 2 3 4 5 

 197 197 191 199 197 
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Scenario generation 

 

Since there are 5 buses, we consider that in the next stage, each bus can either increase by 

150MW or not. This gives a maximum of (i.e. 25) 32 scenarios. In this case-study, 32 scenarios 

are used, we solve for the optimal investment for each scenario separately. 

Scenario reduction 

The scenario reduction technique is performed using hierarchical clustering technique using a 

dendrogram. The optimal solution is solved for all scenarios. The transmission similarity index is 

computed to measure the similarity between the transmission investments of two scenarios. The 

closer the value is to 1.0, the stronger the similarities are between the scenarios.  

Table 19: Optimal solutions for scenarios (1-16) 

                                      Scenarios 

From To MW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 3 200 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 

1 6 200 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 

1 6 200 1 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 

1 6 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 6 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 8 200 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 

1 8 200 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

2 3 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 3 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 4 200 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

2 8 200 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 8 200 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 

3 6 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 6 200 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 

4 8 200 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 

4 8 200 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 

4 8 400 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

4 8 400 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 0 

5 7 200 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

5 7 200 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

5 7 400 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 

5 7 400 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
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Table 20: Optimal solutions for scenarios (17-32) 

                                            Scenarios 

From To MW 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

1 2 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 3 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 6 200 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 

1 6 200 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 

1 6 400 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

1 6 400 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

1 8 200 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 

1 8 200 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 3 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

2 3 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 4 200 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 

2 8 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 8 200 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 

3 6 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 6 200 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 

4 8 200 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 

4 8 200 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 

4 8 400 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

4 8 400 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 

5 7 200 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 7 200 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 7 400 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

5 7 400 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

 

 

 

Scenario reduction 

The figure 36 below describes the dendrogram for scenario clustering. 
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Figure 36: Dendrogram for scenario clustering for wind cluster #1 

 

Group 1 {28, 29, 12, 25, 4, 20, 21, 13} 

Group 2{ 5,6, 14} 

Group 3 {2,7,22,23,24,26,30,30,31,11,15,9} 

Group 4{8, 16,18} 

Group 5 {1,7,19,3} 

Group 6 {27} 

A representative scenario is selected from each cluster and modeled explicitly in the 

adaptation formulation. 
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Figure 37: Design for β= 1(Core-trajectory) 

 

  All designs are N-1 secure and all the wind farms are connected.  
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Figure 38: Design for β=0.25(Core-trajectory) 

Validation 

We validate these results using two different approaches. In both approaches, six 

deterministic designs (the optimal solutions for the six representative scenarios) are compared 

with an adaptive design obtained based values of β=0.25 and β=1.  The two validation 

approaches are described in chapter 5. 

The results of validation approach 1 are described first and the results for validation approach 2 

are described next. 

Approach #1 

Figure 39 below provides the average total costs across all scenarios for the adaptation-based 

design (β=0.25 and β=1) and different deterministic designs. Here, “total costs” refers to the sum 

of total investments (both the original investments (i.e. initial investment) as well as the 
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investments necessary to adapt to each scenario) and the total operating costs over the planning 

horizon. It can be seen in Fig.39 below that β=1 design performs best among all of the designs 

and opt#29 performs worst among all the designs.     

 

Figure 39: Average total costs across all scenarios for different deterministic and β designs 
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Figure 40: Sum of squares regret across all scenarios for different deterministic and β 

designs 

      To illustrate the robustness of each design, we show regret in Fig.40 above. Here, we 

compute regret, for each design X, as the sum of squared differences across all scenarios 

between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

        Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 
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Figure 41: Average adaptation costs and total costs for different deterministic and β 

designs 

The horizontal grey line in Fig. 41 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. It can be seen that in Fig. 

41 above that although Opt#27 and Opt#29 have low adaptation cost but have a high total costs. 

β has to be well selected in order to avoid designing a robust design, robust designs tend to have 

low adaptation costs but very high total costs. It can seen in Fig. 41 above, that the design with 

lower β has a higher adaptation costs than the design with higher β. 

Approach #2 

Figure 42 below provides the average total costs across all scenarios for the adaptation-based 

design (β=0.25 and β=1) and different deterministic designs. Here, “total costs” refers to the sum 

of total investments (both the original investments (i.e. cost of core trajectory) as well as the 

investments necessary to adapt to each scenario) and the total operating costs over the planning 
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horizon. It can be seen in Fig. 42 below that β=1 design performs best among all of the designs 

and opt#29 performs worst among all the designs.     

 
Figure 42: Average total costs across all scenarios for different deterministic and β designs 
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Figure 43: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 43 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario.” 

        Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 
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Figure 44: Average adaptation costs and total costs for different deterministic and β 

designs 

The horizontal grey line in Fig. 44 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. It can be seen in Fig. 44 

above that Opt # 29 has the lowest adaptation costs but has the highest total costs. β has to be 

well selected in order to avoid designing a robust design, robust designs tend to have low 

adaptation costs but very high total costs. 

Case-study #2 for windfarm group #2 

The figure for wind cluster #1 can be located on the Iowa map in section 6.3. 

 

Table 21: Stage 1 wind-farm capacities 

WF/MW 1 2 3 4 5 6 

 197 200 200 198 193 196 
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Scenario generation 

We divide the number of buses based on  longitude and latitude data in to four areas {1}  {2,3}   

{4,5}   {6}.Therefore the  6 buses  are divided four areas, we consider that each bus in an area  

can either increase by 150MW or not in the next stage. This gives a maximum of 16 (i.e 24) 

scenarios. In this case-study, 16 scenarios are used, we solve for the optimal investment for each 

scenario separately. 

 

Scenario reduction 

The scenario reduction technique is performed using hierarchical clustering technique using a 

dendrogram. The optimal solution is solved for all scenarios. The transmission similarity index is 

computed to measures the similarity between the transmission investments of two scenarios. The 

closer the value to one the stronger the similarities between scenarios. 

Table 22: Optimal solutions for all scenarios 

                                                 Scenarios 

From To MW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 7 200 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 7 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 7 400 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 

2 3 200 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 

2 3 200 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

2 4 200 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 

2 6 200 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

2 9 200 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

2 9 200 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 

2 9 400 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 

2 9 400 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

3 4 200 1 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 

3 4 200 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

3 5 200 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 

3 8 200 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 

3 8 200 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

3 9 200 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

4 5 200 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 0 
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                                                                  Table 22 continued 

4 6 200 0 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 

4 6 200 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

4 8 200 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 

4 8 200 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 

4 8 400 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 

4 9 200 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 

4 9 400 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

5 8 200 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 

5 8 200 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 1 

5 8 400 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

5 8 400 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

6 8 200 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 

6 8 200 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 0 

6 8 400 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 

6 8 400 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 

 

 

Figure 45: Dendrogram for scenario clustering for wind cluster #2 
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Group 4 {12} 

Group 5 {16} 

Group 6 {13} 

 

A representative scenario is selected from each cluster and modeled explicitly in the adaptation 

formulation. 

 

 

Figure 46: β= 0.2(Core-trajectory) 
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All designs are N-1 secure and all the wind farms are connected.  

 

Figure 47: β= 0.9(Core-trajectory) 

 

 

 

 

Validation 

We validate these results using two different approaches. In both approaches, six deterministic 

designs (the optimal solutions for the six representative scenarios) are compared with an adaptive 

design obtained based values of β=0.4 and β=0.9.   
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The results of validation approach 1 are described first, while the results of validation approach 2 

are described thereafter. 

 

Approach #1 

Figure 48 below provides the total costs across all scenarios for the adaptation-based design 

(β=0.4 and β=0.9) and different deterministic designs. Here, “total costs” refers to the sum of 

total investments (both the original investments (i.e. initial investment) as well as the 

investments necessary to adapt to each scenario) and the total operating costs over the planning 

horizon. 

 

 
 

Figure 48: Average total costs across all scenarios for different deterministic and β designs 
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Figure 49: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 49 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

        Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 
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Figure 50: Average adaptation costs and total costs for different deterministic and β 

designs 

The horizontal grey line in Fig. 50 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. It can be seen in Fig. 50 

above that Opt#12 and Opt#16 have low adaptation costs but very high total costs. β has to be 

well selected in order to avoid designing a robust design, robust designs tend to have low 

adaptation costs but very high total costs. 

Approach # 2 

Figure 51 below provides the average total costs across all scenarios for the adaptation-based 

design (β=0.4 and β=0.9) and different deterministic designs. Here, “total costs” refers to the 

sum of total investments (both the original investments(i.e cost of coe-trajectory) as well as the 

investments necessary to adapt to each scenario) and the total operating costs over the planning 

horizon. 
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Figure 51: Average total costs across all scenarios for different deterministic and β designs 
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Figure 52: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 52 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

       Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 
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Figure 53: Average adaptation costs and total costs for different deterministic and β 

designs 

The horizontal grey line in Fig. 53 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. It can be seen in Fig. 53 

above that  Opt# 16 has the lowest adaptation costs but has a very high total costs. β has to be 

well selected in order to avoid designing a robust design, robust designs tend to have low 

adaptation costs but very high total costs. 

Case-study for wind group #3 

The figure for wind cluster #3 can be located on the Iowa map in section 6.3 
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Table 23: Stage 1 wind-farm capacities 

WF/MW 1 2 3 4 5 6 

 191 199 199 198 200 199 

 

Scenario generation 

We divide the number of buses based on longitude and latitude data in to four areas {1,2} {3,4} 

{5} {6}.Therefore the  6 buses  are divided four areas, we consider that each bus in an area  can 

either increase by 150MW or not in the next stage. This gives a maximum of 16 (i.e 24) 

scenarios. In this case-study, 14 scenarios are used, we solve for the optimal investment for each 

scenario separately. 

Scenario reduction 

The scenario reduction technique is performed using hierarchical clustering technique using a 

dendrogram. The optimal solution is solved for all scenarios. The transmission similarity index is 

computed to measures the similarity between the transmission investments of two scenarios. The 

closer the value to one the stronger the similarities between scenarios. 

Table 24: Optimal solutions for all scenarios 

                                    Scenarios  

From To MW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 2 200 0 0 0 0 1 0 1 1 1 0 0 1 0 0 

1 3 200 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 4 200 0 1 1 0 0 1 0 0 0 0 0 0 0 1 

1 9 200 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

1 9 200 1 1 1 1 0 1 1 0 1 1 1 0 0 0 

1 9 400 0 0 1 1 1 1 1 1 1 1 0 1 1 1 

1 9 400 0 0 0 0 1 0 0 1 0 0 0 1 1 1 

2 3 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 3 200 0 0 1 0 1 1 1 1 1 1 1 1 1 1 

2 4 200 1 0 1 1 1 0 1 1 1 1 1 1 1 1 

2 4 200 0 0 0 0 0 0 1 0 1 0 1 0 0 1 

2 9 200 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

2 9 200 1 1 1 1 1 1 1 1 1 0 0 1 1 1 

2 9 400 0 0 0 0 0 0 0 0 0 1 1 0 1 1 
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Table 24 continued 

 

2 9 400 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

3 4 200 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

3 5 200 0 0 0 0 0 1 0 0 0 0 0 0 1 1 

3 7 200 0 0 1 1 1 0 0 0 0 0 0 0 0 0 

3 8 200 1 1 0 0 0 0 1 0 1 1 1 0 0 0 

4 5 200 0 0 0 0 0 0 0 0 0 1 1 0 0 0 

4 8 200 1 1 1 1 1 0 1 1 1 0 0 1 1 1 

4 8 200 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

4 9 200 0 0 0 0 1 0 0 0 0 1 0 1 0 0 

5 6 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 8 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 8 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

6 7 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

6 7 200 1 1 0 0 0 0 1 1 0 1 0 0 0 0 

5 7 200 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

6 10 200 0 0 0 0 0 1 0 0 0 0 1 1 1 1 

6 10 200 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

 

 

Figure 54: Dendrogram for scenario clustering for wind cluster #3 
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Cluster 5 {10, 11} 

Cluster 6 {6} 

Cluster 7 {5} 

A representative scenario is selected from each cluster and modeled explicitly in the adaptation 

formulation. 

 

 

Figure 55: Design for β=0.7(Core-trajectory) 

 



www.manaraa.com

144 
 

  

 

All designs are N-1 secure and all the wind farms are connected.  

 

Validation 

We validate these results using two different approaches. In both approaches, seven 

deterministic designs (the optimal solutions for the seven representative scenarios) are compared 

with an adaptive design obtained based values of β=0.7.   

The results of validation approach 1 are described first, while the results of validation approach 2 

are described thereafter.  

 

Appoach # 1 

Figure 56 below provides the average total costs across all scenarios for the adaptation-based 

design (β=0.7) and different deterministic designs. Here, “total costs” refers to the sum of total 

investments (both the original investments (i.e. initial investment) as well as the investments 

necessary to adapt to each scenario) and the total operating costs over the planning horizon. It 

can be seen in Fig.56 below that the adaptation based design has the lowest average total costs 

when compared to all other deterministic designs. 
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Figure 56: Average total costs across all scenarios for different deterministic and β designs 

 

Figure 57: Sum of squares regret across all scenarios for different deterministic and β 

designs 
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To illustrate the robustness of each design, we show regret in Fig. 57 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

        Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 

 

Figure 58: Average adaptation costs and total costs for different deterministic and β 

designs 

The vertical line in Fig. 58 above that passes through the bars represents a change in range, 

because adaptation and total costs are different in magnitude. It can be seen in Fig. 58 that 

Opt#14 has the lowest adaptation cost but has the highest total costs. β has to be well selected in 

order to avoid designing a robust design, robust designs tend to have low adaptation costs but 

very high total costs. 
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Approach # 2 

Figure 59 below provides the average total costs across all scenarios for the adaptation-based 

design (β=0.7) and different deterministic designs .Here, “total costs” refers to the sum of total 

investments (both the original investments (i.e. cost of core-trajectory) as well as the investments 

necessary to adapt to each scenario) and the total operating costs over the planning horizon. It 

can be seen in Fig. 59 below that the adaptation based design has the lowest average total costs 

when compared to all other deterministic designs. 

 

Figure 59: Average total costs across all scenarios for different deterministic and β designs 
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Figure 60: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 60 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario 

        Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 
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Figure 61: Average adaptation costs and total costs for different deterministic and β 

designs 

The horizontal grey line in Fig. 61 above that passes through the bars represents a change in 

range, because adaptation and total costs are different in magnitude. It can be seen in Fig. 61 

above that Opt#14 has the lowest adaptation cost but has the highest total costs. β has to be well 

selected in order to avoid designing a robust design, robust designs tend to have low adaptation 

costs but very high total costs. 

Case-study for wind group #4 

The figure for wind cluster #4 can be located on the Iowa map in section 6.3. 

 

Table 25: Stage 1 wind-farm capacities 

WF/MW 1 2 3 4 5 6 7 8 9 

 200 199 197 196 194 199 199 200 195 
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Scenario generation 

We divide the number of buses based on  longitude and latitude data in to four areas 

{{1,2} {3,4,7} {5,9} {6,8}.Therefore the  9 buses  are divided four areas, we consider that each 

bus in an area  can either increase by 150MW or not in the next stage. This gives a maximum of 

(i.e 24) 16 scenarios. In this case-study, 15 scenarios are used, we solve for the optimal 

investment for each scenario separately. 

Scenario reduction 

The scenario reduction technique is performed using hierarchical clustering technique 

using a dendrogram. The optimal solution is solved for all scenarios. The transmission similarity 

index is computed to measures the similarity between the transmission investments of two 

scenarios. The closer the value to one the stronger the similarities between scenarios. 

Table 26: Optimal solutions for all scenarios 

                                     Scenarios 

From To MW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 200 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 

1 2 200 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

1 3 200 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

1 7 200 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 

1 7 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 10 200 1 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 

1 10 200 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 

1 11 200 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 11 200 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 

2 8 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

2 10 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 10 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 11 200 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 

3 4 200 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 

3 4 200 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 

3 5 200 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 0 

3 7 200 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 

3 7 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

3 10 200 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 
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Table 26 continued 

 

3 10 200 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 

3 10 400 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 

3 10 400 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 

4 5 200 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 

4 7 200 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 

4 9 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

4 10 200 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 

4 12 200 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 

4 12 200 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 0 

5 9 200 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 

5 9 200 1 1 1 1 0 1 1 1 1 0 1 0 0 0 0 1 

5 10 200 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 

6 8 200 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 

6 9 200 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 

6 9 200 1 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 

6 10 200 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 

6 10 200 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 

7 12 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

7 12 200 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 

8 9 200 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 

8 9 200 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 10 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

8 10 200 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

8 10 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

8 10 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

9 10 200 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 

9 10 200 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 

9 10 400 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 
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Figure 62: Dendrogram for scenario clustering for wind cluster #4 

The scenarios were divided into 4 clusters 

Cluster 1  {6,8,9,11,13} 

Cluster 2{5,10,15} 

Cluster 3 {1,2,3,4,7} 

Cluster 4 {12,14} 

A representative scenario is selected from each cluster and modeled explicitly in the adaptation 

formulation. 
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Figure 63: Design for β= 0.75(Core-trajectory) 

 

 

All designs are N-1 secure and all the wind farms are connected.  

 

Validation 

We validate these results using two different approaches. In both approaches, four 

deterministic designs (the optimal solutions for the four representative scenarios) are compared 

with an adaptive design obtained based values of β=0.75.   
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        The results of validation approach 1 is presented first and the results of validation approach 

2 are presented next. 

 

Approach # 1 

Figure 64 below provides the average total costs across all scenarios for the adaptation-based 

design (β=0.75) and different deterministic designs. Here, “total costs” refers to the sum of total 

investments (both the original investments (i.e. initial investments) as well as the investments 

necessary to adapt to each scenario) and the total operating costs over the planning horizon. It 

can be seen in Fig. 64 below that the adaptation based design has the lowest average total costs 

when compared to all other deterministic designs. 

 

Figure 64: Average total costs across all scenarios for different deterministic and beta 

designs 
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Figure 65: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 65 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario 

        Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 
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Figure 66: Average adaptation costs and total costs for different deterministic and β design 

The horizontal grey line in Fig. 66 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. It can be seen in Fig. 66 

above that Opt#12 has the lowest adaptation costs but has the highest total costs. β has to be well 

selected in order to avoid designing a robust design, robust designs tend to have low adaptation 

costs but very high total costs. 

Approach #2 

Figure 67 below provides the total costs across all scenarios for the adaptation-based design 

(β=0.75) and different deterministic designs. Here, “total costs” refers to the sum of total 

investments (both the original investments (i.e. cost of core-trajectory) as well as the investments 

necessary to adapt to each scenario) and the total operating costs over the planning horizon. It 
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can be seen in Fig.67 below that the adaptation based design has the lowest average total costs 

when compared to all other deterministic designs. 

 

Figure 67: Average total costs across all scenarios for different deterministic and β designs 
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Figure 68: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 68 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

        Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 
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Figure 69: Average adaptation costs and total costs for different deterministic and β 

designs 

The horizontal grey line in Fig. 69 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. It can be seen in Fig. 69 

above that Opt#12 has the lowest adaptation costs but has the highest total costs. β has to be well 

selected in order to avoid designing a robust design, robust designs tend to have low adaptation 

costs but very high total costs. 

Case-study for wind cluster #5 

The figure for wind cluster #5 can be located on the Iowa map in section 6.3. 

 

Table 27: Stage 1 wind-farm capacities 

WF/MW 1 2 3 4 5 6 7 8 9 10 11 

 191 191 195 198 185 191 196 196 197 190 200 

 

Scenario generation  

We divide the number of buses based on  longitude and latitude data in to four areas {5} {9,10} 

{3,7,8,11} {1,2,4,6}.Therefore the  11 buses  are divided into four areas, we consider that each 
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bus in an area  can either increase by 150MW or not in the next stage. This gives a maximum of 

(i.e 24) 16 scenarios. In this case-study, 16 scenarios are used, we solve for the optimal 

investment for each scenario separately. 

Scenario reduction 

The scenario reduction technique is performed using hierarchical clustering technique using a 

dendrogram. The optimal solution is solved for all scenarios. The transmission similarity index is 

computed to measures the similarity between the transmission investments of two scenarios. The 

closer the value to one the stronger the similarities between scenarios. 

Table 28: Optimal solutions for all scenarios 

                                          Scenarios  

From To MW 1* 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 3 200 1 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0 

1 4 200 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 

1 6 200 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 

1 6 200 1 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 

1 12 200 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 

1 12 200 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 

1 12 400 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

2 4 200 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 

2 6 200 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 

2 12 200 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 

2 12 200 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 

2 12 400 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 

2 16 200 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 

3 8 200 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 

3 11 200 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 

3 11 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 12 200 0 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 

3 12 200 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 

3 12 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 6 200 0 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 

 

 

 



www.manaraa.com

161 
 

  

Table 28 continued 

4 6 200 1 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 

4 7 200 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 

4 7 200 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 

4 8 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 11 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 12 200 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 

4 12 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 12 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 16 200 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 

5 13 200 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 

5 13 200 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 

5 13 400 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 

5 13 400 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

7 8 200 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

7 11 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

7 12 200 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 

7 16 400 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 

8 12 200 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 

8 16 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

9 10 200 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 1 

9 10 200 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

9 14 200 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

9 14 200 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 1 

9 14 400 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

9 14 400 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 

10 14 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 14 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 15 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 15 200 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 

11 12 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

11 12 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
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Figure 70: Dendrogram for scenario clustering for wind cluster #5 

Cluster 1 { 1,4,5} 

Cluster 2 {2, 9, 10, 14} 

Cluster 3 { 3,11,8,6} 

Cluster 4 {7} 

Cluster 5 {13}  

Cluster 6 {12,15,16} 

 

A representative scenario is selected from each cluster and modeled explicitly in the adaptation 

formulation. 
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Figure 71: Design for β= 1(Core-trajectory) 
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Validation 

We validate these results using two different approaches. In both approaches, six deterministic 

designs (the optimal solutions for the six representative scenarios) are compared with an adaptive 

design obtained based values of β=1.   

        The results of validation approach 1 is presented first and the results of validation approach 

2 is presented next. 

Approach # 1 

Figure 72 below provides the total costs across all scenarios for the adaptation-based design 

(β=0.8) and different deterministic designs. Here, “total costs” refers to the sum of total 

investments (both the original investments (i.e. initial investment) as well as the investments 

necessary to adapt to each scenario) and the total operating costs over the planning horizon. It 

can be seen in Fig.72 below that the adaptation based design has the lowest average total costs 

when compared to all other deterministic designs. 
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Figure 72: Average total costs across all scenarios for different deterministic and β designs 

 

Figure 73: Sum of squares regret across all scenarios for different deterministic and β 

designs 
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To illustrate the robustness of each design, we show regret in Fig.73 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

        Each of the differences are divided by a million. It can be seen in the figure above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design. 

 

 

Figure 74: Average adaptation costs and total costs for different deterministic and β 

designs  

The horizontal grey line in Fig. 74 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. Opt#13 has the lowest 

adaptation costs but has the highest total costs. β has to be well selected in order to avoid 
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designing a robust design, robust designs tend to have low adaptation costs but very high total 

costs. 

Approach # 2 

Figure 75 below provides average total costs across all scenarios for the adaptation-based design 

(β=1) and different deterministic designs. Here, “total costs” refers to the sum of total 

investments (both the original investments (i.e. cost of core-trajectory) as well as the investments 

necessary to adapt to each scenario) and the total operating costs over the planning horizon. It 

can be seen in Fig. 75 below that the adaptation based design has the lowest average total costs 

when compared to all other deterministic designs. 

 

Figure 75: Average total costs across all scenarios for different deterministic and β designs 
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Figure 76: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 76 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

        Each of the differences are divided by a million. It can be seen in the Fig. 77 above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design.   
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       Figure 77: Average adaptation costs and total costs for different deterministic and β 

designs 

The horizontal grey line in Fig. 77 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. It can be seen in Fig. 77 

above that Opt#13 has the lowest adaptation costs but has the total costs. β has to be well 

selected in order to avoid designing a robust design, robust designs tend to have low adaptation 

costs but very high total costs. 

Case-study for wind group #6 

The figure for wind cluster #6 can be located on the Iowa map in section 6.3. 

Table 29: Stage 1 wind-farm capacities 

WF/MW 1 2 3 4 5 6 7 8 9 10 11 

 200 193 199 188 200 192 200 200 200 199 192 
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Scenario generation 

We divide the number of buses based on longitude and latitude data in to four areas {5,6,7} 

{2,3,4}  {10,11} {1,8,9}.Therefore the  11 buses  are divided into four areas, we consider that 

each bus in an area  can either increase by 150MW or not in the next stage. This gives a 

maximum of 16 (i.e. 24) scenarios. In this case-study, 16 scenarios are used. 

Scenario reduction 

The scenario reduction technique is performed using hierarchical clustering technique using a 

dendrogram. The optimal solution is solved for all scenarios. The transmission similarity index is 

computed to measures the similarity between the transmission investments of two scenarios. The 

closer the value to one the stronger the similarities between scenarios. 

Table 30: Optimal solutions for all scenarios 

                                               Scenarios  

From To MW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 15 200 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 

1 17 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 17 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 3 200 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 1 

2 4 200 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 

2 16 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 16 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 16 400 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 

3 16 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 16 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 5 200 1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 

4 14 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 14 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 14 200 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 

5 14 200 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 

5 16 200 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

5 16 200 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

6 7 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

6 7 200 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

6 14 200 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 
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Table 30 continued 

 

6 14 200 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

6 16 200 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 

6 16 200 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 

7 13 200 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 

7 16 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

7 16 200 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 

8 9 200 0 0 0 1 1 1 1 1 0 1 0 1 0 1 1 1 

8 15 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

8 15 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

8 15 400 0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 

9 15 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

9 15 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 12 200 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 

10 12 200 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 

10 13 200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 13 200 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 

11 12 200 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 

11 12 200 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 

11 12 400 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1 

11 12 400 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 

2 14 200 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 

4 14 400 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 

 

 

 

Figure 78: Dendrogram for scenario clustering for wind cluster #6 
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Cluster 1 {4,5} 

Cluster 2 {1, 7, 3, 8} 

Cluster 3 {2, 10, 15} 

Cluster 4 {9, 13, 14, 16} 

Cluster 5 {11, 12} 

Cluster 6 {6} 

A representative scenario is selected from each cluster and modeled explicitly in the adaptation 

formulation. 

 

 

Figure 79: Design for β= 0.8(Core-trajectory) 
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All designs are N-1 secure and all the wind farms are connected.  

 

Validation 

We validate these results using two different approaches. In both approaches, six deterministic 

designs (the optimal solutions for the six representative scenarios) are compared with an adaptive 

design obtained based values of β=0.8.   

        The results of validation approach 1 is described first and the results for validation approach 

2 is described next.  

 

Approach # 1 

Figure 80 below provides the average total costs across all scenarios for the adaptation-based 

design (β=0.8) and different deterministic designs. Here, “total costs” refers to the sum of total 

investments (both the original investments (i.e. initial investments) as well as the investments 

necessary to adapt to each scenario) and the total operating costs over the planning horizon. 

The adaptation based design has the lowest total costs when compared to all other deterministic 

designs. It can be seen in Fig. 80 below, that the adaptation based design has the lowest average 

total costs when compared to all other deterministic designs. 

 



www.manaraa.com

174 
 

  

 

Figure 80: Average total costs across all scenarios for different deterministic and β designs 
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Figure 81: Sum of squares regret across all scenarios for different deterministic and β 

designs 

To illustrate the robustness of each design, we show regret in Fig. 81 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• The total cost of the design having minimum total cost in the scenario. 

        Each of the differences are divided by a million. It can be seen in the Fig.81 above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design.  
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Figure 82: Average adaptation costs and total costs for different deterministic and β 

designs  

The vertical line in Fig. 82 above that passes through the bars represents a change in 

range, because adaptation and total costs are different in magnitude. It can be seen in Fig.82 that 

the deterministic design Opt#1 has both the highest adaptation and total costs. 

Approach # 2 

Figure 83 below provides the average total costs across all scenarios for the adaptation-based 

design (β=0.8) and different deterministic designs. Here, “total costs” refers to the sum of total 

investments (both the original investments (i.e. cost of core-trajectory) as well as the investments 

necessary to adapt to each scenario) and the total operating costs over the planning horizon. It 

can be seen in Fig. 83 below, that the adaptation based design has the lowest average total costs 

when compared to all other deterministic designs. 
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Figure 83: Average total costs across all scenarios for all scenarios for different 

deterministic and β designs 

 

Figure 84: Sum of squares regret across all scenarios for different deterministic and β 

designs 
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To illustrate the robustness of each design, we show regret in Fig. 84 above. Here, we compute 

regret, for each design X, as the sum of squared differences across all scenarios between  

• the total cost of design X and  

• the total cost of the design having minimum total cost in the scenario. 

        Each of the differences are divided by a million. It can be seen in the Fig. 84 above that the 

adaptation based design has the lowest sum of squares regret, this confirms the consistency of 

adaptation based design.  

 

 

Figure 85: Average adaptation cost and total costs for different deterministic and β designs 

The horizontal grey line in Fig. 85 above that passes through the bars represents a change 

in range, because adaptation and total costs are different in magnitude. It can be seen in Fig. 85 

above that Opt#14 has the highest adaptation and total costs. β has to be well selected in order to 
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avoid designing a robust design, robust designs tend to have low adaptation costs but very high 

total costs. 

6.5.2 Computation issues 

There are certain computational strategies that were useful for increasing the solvability 

of transmission expansion problems. One of them was the fact that big M has to be chosen 

carefully in order to avoid numerical instability [57]. 

 
Symmetry 

Symmetry is a big issue in MILPs because it results in redundant computation due to 

solving of identical sub problems and this happens a lot in TEP with parallel lines[58]. By 

adding symmetry breaking inequalities such as ordering parallel candidate circuits, solution 

times can be significantly reduced [59]. These inequalities significantly reduced computational 

speed. 

 
1n n

ij ijx x   

 
Probing 

One way to deal with the computational complexity of MILP is to probe by fixing 

variables and adding constraints to check for the feasibility when these variables are fixed or 

when these constraints are added. Most commercial software such as CPLEX can detect 

infeasibility within seconds or few minutes. For instance if a variable is fixed to zero and the 

problem becomes infeasible, the variable can be set to one because the variable has be one for 

the optimization to be feasible. Another way is  by adding a constraint to TEP problem that limits 

the number of lines that can be built, if by adding the constraints, the problem become infeasible, 
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a new constraint can be added  to the TEP problem that the number lines need to greater than the 

previous limits. This can reduce the search space of the problem. 

Cplex parameter tuning 

In CPLEX, parameter tuning can significantly increase the performance of an 

optimization problem in terms of time and performance. CPLEX allows the user to select an 

emphasis in for the optimization problem to focus on. The optimization problem can focus on 

optimality feasibility or both. Other performance parameters such as probing and symmetry and 

a host of others are also available. 

 
Solving different “TEP” Parallelly  

Another way to reduce computational complexity in transmission planning is to solve the 

optimization problem in parallel by restricting the number of lines that can be built in each sub-

problem. For instance if there are 30 transmission candidates. One can solve 3 transmission 

planning problems by restricting the first, second and third to build lines between 0-10, 11-20 

and 21-30.  This will greatly reduce the combinatorial search space of the problem. As the 

problems are solving one can use information from their current solution to disregard the others. 

Observations 

One of the observation noticed when providing both lower and upper bounds for our 

optimization problem is that, it was better to provide a lower bound because optimization 

problems with lower bounds found feasible solution quicker that optimization problems with 

upper bounds. This is not a generalization but this was observed in this research. Another thing 

noticed is that the computational time for different values of βs varied. βs at the extreme ends 

tends to require less computational time. 
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CHAPTER 7. CONCLUSION AND FUTURE WORK 

Deterministic transmission planning could cause a lot of regret when future scenarios 

differ from planned scenario. Over-reliance on a single forecast has either led to over-investment 

or under-investment. Limitations in deterministic transmission planning have led to the 

introduction of transmission planning under uncertainty. Transmission expansion planning under 

uncertainty is a very computational task. It is a very challenging process and a daunting task. The 

contributions of this work are described in the next sub-section. 

 

7.1 Contributions 

1) DESIGN OF “R2B” TRANSMISSION PLANNING UNDER UNCERTAINTY 

             This dissertation developed procedures for designing R2B transmission under 

uncertainty and applied it to the Iowa power system. A backbone is designed in order to increase 

the available transfer capability within and out of the state of Iowa. 

 

2) EXTENSION OF ADAPTATION  TO TRANSMISSION  

            One of the contributions of this dissertation is extending the adaptation approach which 

was originally formulated for generation expansion planning to transmission planning. After 

problem formulation, the approach was applied to case-studies and validated. 

 

3) EXTENSION OF ADAPTATION  TO CO-OPTIMIZATION OF TRANSMISSION 

AND GENERATION RESOURCES  

            One of the contributions of this dissertation is extending the adaptation approach which 

was originally formulated for generation expansion planning to co-optimization of transmission 
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and generation resources. After problem formulation, the approach was applied to case-studies 

and validated. 

 

4) IDENTIFICATION OF THE RELATIONSHIP OF STOCHASTIC 

PROGAMMING TO ADAPTATION  

One of the contributions of this dissertation is comparing and contrasting SP and adaptation. The 

conceptual similarities and differences are highlighted, and formulational similarities and 

differences, and the treatment of uncertainty between the approaches, are also identified. 

 

5) DEVELOPMENT OF A SCENARIO REDUCTION TECHNIQUE FOR BOTH 

TRANSMISSION PLANNING AND CO-OPTIMIZATION PLANNING 

 A scenario reduction technique was developed to reduce the computational burden associated 

with solving transmission expansion planning under uncertainty. The idea is to select a 

representative scenario that can cover a wide range of scenarios. By scenario reduction the 

number of constraints and variables are directly reduced, hence making the formulation more 

computationally tractable. 

 

7.2 Possible Future Work 

1.) MODELLING LOCAL UNCERTAINTIES  

In this dissertation we model only global uncertainties due to added computational complexity 

involved in modelling local uncertainties. Modelling local uncertainties will improve the 

accuracy of adaptation-based transmission planning. Future work should consider modelling 

local uncertainties in the adaptation-based transmission planning model. 
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2.) TRANSMISSION EXPANSION PLANNING FOR THE NATIONAL GRID 

USING ADAPTATION  

Renewable rich areas in the United States tend to have low load and most of this renewable 

energy will need to be transferred to high demand areas with high capacity transmission. Also 

depending on the location in the United States, the generation mix is very different, hence also 

high capacity will needed to reduce congestion, since not all regions in United States have cheap 

generation. The volatility of fuel price may also cause congestion at different times. A future 

continuation of this work could be applying the adaptation approach to transmission planning 

under uncertainty at the national level. 

 

3.)  CO-OPTIMIZATION FOR THE NATIONAL GRID USING ADAPTATION  

The generation mix at different regions in the United States is changing. This is due to change in 

government policies and other unpredictable uncertainties. This change is likely to affect the 

change of the flow of power on the national grid level. A co-optimization formulation under 

uncertainty will likely co-ordinate the change of generation mix and the transmission lines 

needed to be built to facilate the change. A future continuation of this work could be applying the 

adaptation approach to co-optimization under uncertainty at the national level. A co-optimization 

formulation at the national level will help policy maker’s long term decisions for the United 

States. 
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APPENDIX IEEE 24-BUS SYSTEM DATA 

            Table33: Branch data (all per-unit data given on a 100 MVA base) 

From To Reactance Capacity (MW) 

1 2 0.001231 175 

1 3 0.211137 175 

1 5 0.084901 175 

2 4 0.1273 175 

2 6 0.192014 175 

3 9 0.11921 175 

3 24 0.0839 400 

4 9 0.107787 175 

5 10 0.088372 175 

6 10 0.033329 175 

7 8 0.06103 175 

8 9 0.164817 175 

8 10 0.164817 175 

9 11 0.0839 400 

9 12 0.0839 400 

10 11 0.0839 400 

10 12 0.0839 400 

11 13 0.04746 500 

11 14 0.041725 500 

12 13 0.0476 500 

12 23 0.096441 500 

13 23 0.086428 500 

14 16 0.038841 500 

15 16 0.17269 500 

15 21 0.04899 500 

15 21 0.04899 500 

15 24 0.051867 500 

16 17 0.025901 500 

16 19 0.023024 500 

17 18 0.014392 500 

17 22 0.105266 500 

18 21 0.025951 500 

18 21 0.025951 500 

19 20 0.039636 500 

19 20 0.039636 500 

20 23 0.021627 500 

20 23 0.021627 500 

21 12 0.06769 500 
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 Table34: Transmission line candidates (all per-unit data given on a 100 MVA base) 

From To Reactance Capacity (MW) 

1 2 0.001231 175 

1 3 0.211137 175 

1 5 0.084901 175 

2 4 0.1273 175 

2 6 0.192014 175 

3 9 0.11921 175 

3 24 0.0839    400 

4 9 0.107787 175 

5 10 0.088372 175 

6 10 0.033329 175 

7 8 0.06103 175 

8 9 0.164817 175 

8 10 0.164817 175 

9 11 0.0839 400 

9 12 0.0839 400 

10 11 0.0839 400 

10 12 0.0839 400 

11 13 0.04746 500 

11 14 0.041725 500 

12 13 0.0476 500 

12 23 0.096441 500 

13 23 0.086428 500 

14 16 0.038841 500 

15 16 0.17269 500 

15 21 0.04899 500 

15 21 0.04899 500 

15 24 0.051867 500 

16 17 0.025901 500 

16 19 0.023024 500 

17 18 0.014392 500 

17 22 0.105266 500 

18 21 0.025951 500 

18 21 0.025951 500 

19 20 0.039636 500 

19 20 0.039636 500 

20 23 0.021627 500 

20 23 0.021627 500 

21 12 0.06769 500 
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            Table 35: Generator data  for transmission expansion planning case-study 

Bus number Capacity Generator type 

1 469.33MW       Nuclear 

2 469.33MW NG 

7 733.33MW Coal 

13 1444.66MW  NG  

15 525.56MW Wind 

16 378.88MW NG 

18 977.77MW Nuclear 

21 977.77MW Coal 

22 733.33MW Nuclear 

23 1613.33MW NG 

 

Table 36: Load data 

Load bus Load ratio * 

1 0.0379 

2 0.034 

3 0.0632 

4 0.026 

5 0.0249 

6 0.0477 

7 0.0439 

8 0.06 

9 0.0614 

10 0.0684 

13 0.093 

14 0.0681 

15 0.1112 

16 0.0351 

21 0.1168 

22 0.0635 

23 0.0449 

 

         *By the load ratio is the ratio of load at a given bus to the total load of the system. 
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Table 37 :Generator data  for co-optimization expansion planning case-study 

Bus number Capacity Generator type 

1 287.99MW       Nuclear 

2 287.99MW NG 

7 449.99MW Coal 

13 886.45MW NG 

15 322.50MW Wind 

16 232.49MW NG 

18 599.99MW Nuclear 

21 599.99MW Coal 

22 449.99MW Nuclear 

23 989.99MW NG 
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